Ферменты. Специфичность ферментов. Активный центр фермента. Активный центр ферментов

Все мы слышали о ферментах, но вряд ли каждый из нас досконально знает, как именно устроены эти вещества и зачем они нужны. Эта статья поможет разобраться в структуре и функциях в целом и их активных центров в частности.

История исследований

В 1833 году французский химик Ансельм Пайен выявил и описал свойства фермента амилазы.

Несколько лет спустя Луи Пастер, изучая превращение сахара в спирт при участии дрожжей, предположил, что этот процесс происходит за счет химических веществ, входящих в состав дрожжей.

В конце XIX века Физиолог Вилли Кюне впервые ввел в употребление термин "энзим".

Немец Эдуард Бухнер в 1897 году выделил и описал зимазу - ферментативный комплекс, который катализирует реакцию превращения сахарозы в этиловый спирт. В природе зимаза в большом количестве содержится в дрожжах.

Точно неизвестно, когда и кто открыл активный центр фермента. Это открытие приписывают лауреату Нобелевской премии химику Эдаурду Бухнеру, американскому биологу Джеймсу Самнеру и другим известным ученым, работавшим над изучением ферментативного катализа.

Общие сведения о ферментах

Напомним, что ферменты - вещества белковой природы, которые выполняют в живых организмах функции катализаторов химических реакций. В ферменте есть участки, которые непосредственно не принимают в этом участия, протекание реакции обеспечивает активный центр фермента.

Приведем некоторые свойства ферментов:

1) Эффективность. Небольшого количества катализатора достаточно, чтобы ускорить химическую реакцию в 10 6 раз.

2) Специфичность. Один фермент не универсальный катализатор любой реакции в клетке. Для ферментов выражена специфичность действия: каждый фермент катализирует только одну или же несколько реакций с похожими субстратами (исходными реагентами), но для реагентов другой химической природы этот же фермент может быть бесполезен. Взаимодействие с подходящими субстратами и дальнейшее ускорение реакции обеспечивает активный центр фермента.

3) Переменная активность. Активность ферментов в клетке постоянно меняется от низкой до высокой.

4) Концентрация некоторых ферментов в клетке не постоянна и может изменяться в зависимости от внешних условий. Такие ферменты в биологии называют индуцибельными.

Классификация ферментов

По своей структуре ферменты принято делить на простые и сложные. Простые состоят исключительно из аминокислотных остатков, сложные имеют в составе вещества небелковую группу. Сложные называют коферментами.

По типу катализируемых реакций ферменты делятся на:

1) Оксидоредуктазы (катализируют окислительно-восстановительные реакции).

2) Трансферазы (переносят отдельные группы атомов).

3) Лиазы (расщепляют химические связи).

4) Липазы (образуют связи в реакциях за счет энергии АТФ).

5) Изомеразы (учувствуют в реакциях взаимного превращения изомеров).

6) Гидролазы (катализируют химические реакции с гидролитическим расщеплением связей).

Структура фермента

Фермент - сложная трехмерная структура, в состав которой входят в основном аминокислотные остатки. Также есть простетическая группа - компонент небелковой природы, связанный с аминокислотными остатками.

Ферменты - в основном глобулярные белки, которые могут объединяться в сложные комплексы. Как и другие вещества белковой природы, ферменты денатурируют при повышении температуры или под воздействием некоторых химических реактивов. Во время денатурации изменяется третичная структура фермента и, соответственно, свойства активного центра ферментов. В результате активность энзима резко уменьшается.

Катализируемый субстрат обычно значительно меньше самого фермента. Самый простой энзим состоит из шестидесяти аминокислотных остатков, а его активный центр - всего из двух.

Существуют ферменты, каталитический участок которых представлен не аминокислотами, а простетической группой органического или (чаще) неорганического происхождения - кофактором.

Понятие об активном центре

Лишь небольшой участок фермента принимает непосредственное участие в химических реакциях. Эта часть фермента и называется активным центром. Активный центр фермента - это липид, несколько аминокислотных остатков или простетическая группа, которая связывается с субстратом и катализирует реакцию. Аминокислотные остатки активного центра могут принадлежать любым аминокислотам - полярным, неполярным, заряженным, ароматическим, незаряженным.

Активный центр фермента (это липид, аминокислоты или другие вещества, способные взаимодействовать с реагентами) - самая важная часть фермента, без него эти вещества были бы бесполезны.

Обычно молекула фермента имеет только один активный центр, связывающийся с одним или несколькими схожими реагентами. Аминокислотные остатки активного центра формируют водородные, гидрофобные или ковалентные связи, образуя энзим-субстратный комплекс.

Структура активного центра

Активный центр простых и сложных ферментов представляет собой карман или щель. Эта структура активного центра фермента должна электростатически и геометрически соответствовать субстрату, так как изменение третичной структуры фермента может изменить активный центр.

Связывающий и каталитический центр - участки активного центра фермента. Очевидно, что связывающий центр "проверяет" субстрат на совместимость и связывается с ним, а каталитический центр принимает непосредственное участие в реакции.

Связывание активного центра с субстратом

Для того чтобы пояснить, как же активный центр фермента связывается с тем или иным реагентом, было предложено несколько теорий. Самая популярная из них - теория Фишера, она же теория "замка и ключа". Фишер предположил, что существует фермент, идеально подходящий каждому субстрату по своим физико-химическим свойствам. После образования энзим-субстратного комплекса никаких модификаций не происходит.

Другой американский ученый - Дэниел Кошланд - дополнил теорию Фишера предположением о том, что активный центр фермента может менять свою конформацию до тех пор, пока не подойдет определенному субстрату.

Кинетика ферментативных реакций

Особенности протекания ферментативных реакций изучает отдельная отрасль биохимии - ферментативная кинетика. Эта наука изучает особенности протекания реакций при различных концентрациях ферментов и субстратов, внутри клетки, а также свойства активного центра ферментов в зависимости от изменения физических и химических параметров среды.

Ферментативная кинетика оперирует такими понятиями, как скорость реакции, энергия активации, активационный барьер, молекулярная активность, удельная активность и др. Рассмотрим некоторые из этих понятий.

Чтобы произошла биологическая реакция, реагентам необходимо передать некоторую энергию. Эта энергия называется энергией активации.

Добавление фермента к реагентам позволяет снизить Некоторые вещества на реагируют без участия энзимов, так как энергия активации слишком высока. Равновесие реакции при добавлении фермента не сдвигается.

Скорость реакции - количество продукта реакции, появившееся или исчезнувшее в единицу времени.

Зависимость скорости реакции от концентрации субстрата характеризует безразмерная физическая величина - константа Михаэлиса.

Молекулярная активность - количество молекул субстрата, преобразованных одной молекулой фермента в единицу времени.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты ) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент , и небелковую часть – кофактор . Примером сложных ферментов являются сукцинатдегидрогеназа (содержит ФАД), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем), лактатдегидрогеназа (содержит Zn 2+), амилаза (содержит Ca2+ ).

Кофактор , в свою очередь, может называться коферментом (НАД+ , НАДФ+ , ФМН, ФАД, биотин) или простетической группой (гем, олигосахариды, ионы металлов Fe2+ , Mg2+ , Ca2+ , Zn2+ ).

Деление на коферменты и простетические группы не всегда однозначно:
если связь кофактора с белком прочная, то в этом случае говорят о наличии простетической группы ,
но если в качестве кофактора выступает производное витамина - то его называют коферментом , независимо от прочности связи.

Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении.

Как многие белки, ферменты могут быть мономерами , т.е. состоять из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Структурно-функциональная организация ферментов

В составе фермента выделяют области, выполняющие различную функцию:

1. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи. В активном центре выделяют два участка:

  • якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
  • каталитический – непосредственно отвечает за осуществление реакции.
Схема строения ферментов

У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.

У сложных ферментов в активном центре обязательно расположены функциональные группы кофактора.

Схема формирования сложного фермента

2. Аллостерический центр (allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции.

Аллостерические ферменты являются полимерными белками, активный и регуляторный центры находятся в разных субъединицах.

Схема строения аллостерического фермента

В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество (см "Регуляция активности ферментов ").

Изоферменты

Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента, но катализирующие одну и ту же реакцию . Изоферменты отличаются сродством к субстрату, максимальной скоростью катализируемой реакции, чувствительностью к ингибиторам и активаторам, условиями работы (оптимум pH и температуры).

Как правило, изоферменты имеют четвертичную структуру, т.е. состоят из двух или более субъединиц. Например, димерный фермент креатинкиназа (КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 (КК-1) состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 (КК-2) – по одной М- и В-субъединице, активна в миокарде, креатинкиназа-3 (КК-3) содержит две М-субъединицы, специфична для скелетной мышцы.

Также существует пять изоферментов лактатдегидрогеназы (роль ЛДГ) – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ. heart – сердце) и М (англ. muscle – мышца). Лактатдегидрогеназы типов 1 (Н 4) и 2 (H 3 M 1) присутствуют в тканях с аэробным обменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (H 1 M 3) и ЛДГ-5 (М 4) находятся в тканях, склонных к анаэробному обмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточным типом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (H 2 M 2).

Еще одним примером изоферментов является группа гексокиназ , которые присоединяют фосфатную группу к моносахаридам гексозам и вовлекают их в реакции клеточного метаболизма. Из четырех изоферментов выделяется гексокиназа IV (глюкокиназа ), которая отличается от остальных изоферментов высокой специфичностью к глюкозе, низким сродством к ней и нечувствительностью к ингибированию продуктом реакции.

Мультиферментные комплексы

В мультиферментном комплексе несколько ферментов прочно связаны между собой в единый комплекс и осуществляют ряд последовательных реакций, в которых продукт реакции непосредственно передается на следующий фермент и является только его субстратом. Возникает туннельный эффект , т.е. субстрат попадает в созданный ферментами "туннель". В результате промежуточные метаболиты избегают контакта с окружающей средой, снижается время их перехода к следующему активному центру и значительно ускоряется скорость реакции.

) и катализирующие конкретные реакции. Такая способность возникает в результате формирования промежуточного продукта при связывании антитела с антигеном (имитация переходного комплекса E-X ферментативной реакции).

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).

Активный центр ферментов

Наименование параметра Значение
Тема статьи: Активный центр ферментов
Рубрика (тематическая категория) Дом

Свойства и механизм действия ферментов. Кофакторы ферментов

Ферменты , или энзимы - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают).

Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

Термины ʼʼферментʼʼ и ʼʼэнзимʼʼ давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной).

Наука о ферментах принято называть энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

Активность ферментов определяется их трёхмерной структурой.

Как и всœе белки, ферменты синтезируются в виде линœейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Изучение механизма химической реакции, катализируемой ферментом наряду с определœением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента͵ природы функциональных групп его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат, а также химической природы участка (участков) молекулы фермента͵ который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата͵ участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - ʼʼактивный центрʼʼ - уникальная комбинация остатков аминокислот в молекуле фермента͵ обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа

В активном центре условно выделяют

  • каталитический центр - непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или ʼʼякорнаяʼʼ площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область принято называть сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной ʼʼшубыʼʼ
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (к примеру, поляризует) молекулы субстратов.

Обычно присоединœение фермента к субстрату происходит за счёт ионных или водородных связей, редко - за счёт ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), к примеру:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). По этой причине ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделœением большего количества энергии. К примеру, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Активный центр ферментов - понятие и виды. Классификация и особенности категории "Активный центр ферментов" 2017, 2018.

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый “активный центр” фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность !

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр . Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора ), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами ), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.



Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрат. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...