1 дать определение физической величины. Физическая величина и ее измерение

Физическая величина

Физи́ческая величина́ - физическое свойство материального объекта, физического явления , процесса, которое может быть охарактеризовано количественно.

Значение физической величины - одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения , на основе которой они были получены.

Размер физической величины - значения чисел, фигурирующих в значении физической величины .

Например, автомобиль может быть охарактеризован с помощью такой физической величины , как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100.

Размерность физической величины - единица измерения , фигурирующая в значении физической величины . Как правило, у физической величины много различных размерностей: например, у длины - нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ , СГС и др.

Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.

Пример.
Если физическая величина мощность записывается как

P = 42,3 × 10³ Вт = 42,3 кВт, Р - это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт - значение этой физической величины, 42,3 × 10³ - размер этой физической величины.

Вт - это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило » Международной системы единиц (СИ) .

Размерные и безразмерные физические величины

  • Размерная физическая величина - физическая величина, для определения значения которой нужно применить какую-то единицу измерения этой физической величины. Подавляющее большинство физических величин являются размерными.
  • Безразмерная физическая величина - физическая величина, для определения значения которой достаточно только указания её размера. Например, относительная диэлектрическая проницаемость - это безразмерная физическая величина.

Аддитивные и неаддитивные физические величины

  • Аддитивная физическая величина - физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга. Например, физическая величина масса - аддитивная физическая величина.
  • Неаддитивная физическая величина - физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга её значений не имеет физического смысла. Например, физическая величина температура - неаддитивная физическая величина.

Экстенсивные и интенсивные физические величины

Физическая величина называется

  • экстенсивной, если величина её значения складывается из величин значений этой физической величины для подсистем, из которых состоит система (например, объём , вес);
  • интенсивной , если величина её значения не зависит от размера системы (например, температура , давление).

Некоторые физические величины, такие как момент импульса , площадь , сила , длина , время , не относятся ни к экстенсивным, ни к интенсивным.

От некоторых экстенсивных величин образуются производные величины:

  • удельная величина - это величина, делённая на массу (например, удельный объём);
  • молярная величина - это величина, делённая на количество вещества (например, молярный объём).

Скалярные, векторные, тензорные величины

В самом общем случае можно сказать, что физическая величина может быть представлена посредством тензора определённого ранга (валентности) .

Система единиц физических величин

Система единиц физических величин - совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц - Международная система единиц (СИ) , СГС .

Символы физических величин

Литература

  • РМГ 29-99 Метрология. Основные термины и определения.
  • Бурдун Г. Д., Базакуца В. А. Единицы физических величин . - Харьков : Вища школа, .
  • 9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.
  • 13. Классификация систематических погрешностей измерений по причине возникновения.
  • 14. Классификация систематических погрешностей измерений по характеру проявления.
  • 15. Классификация методов измерений, определение методов, входящих в классификацию.
  • 16. Определения терминов: мера, измерительный прибор, измерительный преобразователь, измерительная установка, измерительная система.
  • 17. Классификация измерительных приборов.
  • 18. Классификация измерительных преобразователей.
  • Вопрос 19. Структура измерительных приборов прямого действия
  • Вопрос 20. Структура измерительных приборов сравнения
  • Вопрос 21. Метрологические характеристики средств измерений
  • 26. Динамические характеристики средств измерений: Дифференциальные уравнения, передаточные функции.
  • 27. Частотные характеристики средств измерений.
  • 28. Классификация погрешностей измерительных устройств.
  • 29) Определение аддитивной, мультипликативной, гистерезисной погрешности и вариации
  • 30) Определение основной, дополнительной, абсолютной, относительной и приведенной погрешностей измерений
  • 31) Нормирование метрологических характеристик средств измерений
  • 32. Нормирование метрологических характеристик средств измерений.
  • 34 Способы нормирования характеристик, определяющих точность измерений. Характеристики статистических распределений.
  • 35 Выявление и исключение грубых погрешностей измерений.
  • 36. Структура измерительных систем и их характеристики
  • 8. Истинное, действительное и измеренное значение физической величины.

    Физической величиной называется одно из свойств физического объекта (явления, процесса), которое является общим в качественном отношении для многих - физических объектов, отличаясь при этом количественным значением.

    Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.).

    В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины.

    Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

    Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

    Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

    9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.

    По характеру изменения измеряемой величины - статические и динамические измерения.

    Динамическое измерение - измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

    Статическое измерение - измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений - не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

    По сложившимся совокупностям измеряемых величин на электрические (сила тока, напряжение, мощность), механические (масса, количество изделий, усилия);, теплоэнергетические (температура, давление);, физические (плотность, вязкость, мутность); химические (состав, химические свойства, концентрация) , радиотехнические и т. д.

      Классификация измерений по способу получения результата (по виду).

    По способу получения результатов измерений различают: прямые, косвенные, совокупные и совместные измерения.

    Прямыми называют измерения, при которых искомое значение измеряемой величины находят непосредственно из опытных данных.

    Косвенными называют измерения, при которых искомое значение измеряемой величины находят на основании известной зависимости между измеряемой величиной и величинами, определяемыми с помощью прямых измерений.

    Совокупными называют измерения, при которых одновременно измеряются несколько одноименных величин и определяемое значение находят, решая систему уравнений, которую получают на основании прямых измерений одноименных величин.

    Совместными называют измерения двух или более неодноименных величин для нахождения зависимости между ними.

      Классификация измерений по условиям, определяющим точность результата и по количеству измерений для получения результата.

    По условиям, определяющим точность результата, измерения делятся на три класса:

    1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

    К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения, гиромагнитного отношения протона и др.).

    К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

    2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

    К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

    3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

    Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

    По количеству измерений измерения делятся на однократные и многократные.

    Однократное измерение - это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

    Многократные измерения - это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, - четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

      Классификация случайных погрешностей измерений.

    Случайная погрешность - составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.

    1)Грубая- не превышает допустимую погрешность

    2)Промах- грубая погрешность, зависит от человека

    3)Ожидаемая- полученная в результате эксперимента при созд. условиях

    Физика как наука, изучающая явления природы, использует стандартную методику исследования. Основными этапами можно назвать: наблюдение, выдвижение гипотезы, проведение эксперимента, обоснование теории. В ходе наблюдения устанавливаются отличительные черты явления, ход его течения, возможные причины и последствия. Гипотеза позволяет пояснить ход явления, установить его закономерности. Эксперимент подтверждает (или не подтверждает) справедливость гипотезы. Позволяет установить количественное соотношение величин в ходе опыта, что приводит к точному установлению зависимостей. Подтвержденная в ходе опыта гипотеза ложится в основу научной теории.

    Ни одна теория не может претендовать на достоверность, если не получила полного и безоговорочного подтверждения в ходе эксперимента. Проведение последнего сопряжено с измерениями физических величин, характеризующих процесс. - это основа измерений.

    Что это такое

    Измерение касается тех величин, которые подтверждают справедливость гипотезы о закономерностях. Физическая величина - это научная характеристика физического тела, качественное отношение которой является общим для множества аналогичных тел. Для каждого тела такая количественная характеристика сугубо индивидуальна.

    Если обратиться к специальной литературе, то в справочнике М. Юдина и др. (1989 года издания) читаем, что физическая величина это: “характеристика одного из свойств физического объекта (физической системы, явления или процесса), общая в качественном отношении для многих физических объектов, но в количественном отношении индивидуальная для каждого объекта”.

    Словарь Ожегова (1990 года издания) утверждает, что физическая величина это - "размер, объем, протяженность предмета".

    К примеру, длина - физическая величина. Механика длину трактует как пройденное расстояние, электродинамика использует длину провода, в термодинамике аналогичная величина определяет толщину стенок сосудов. Суть понятия не меняется: единицы величин могут быть одинаковыми, а значение - различным.

    Отличительной чертой физической величины, скажем, от математической, является наличие единицы измерения. Метр, фут, аршин - примеры единиц измерения длины.

    Единицы измерения

    Чтобы измерить физическую величину, ее следует сравнить с величиной, принятой за единицу. Вспомните замечательный мультфильм «Сорок восемь попугаев». Чтобы установить длину удава, герои измеряли его длину то в попугаях, то в слонятах, то в мартышках. В этом случае длину удава сравнивали с ростом других героев мультфильма. Результат количественно зависел от эталона.

    Величины - мера ее измерения в определенной системе единиц. Путаница в этих мерах возникает не только вследствие несовершенства, разнородности мер, но иногда и из-за относительности единиц.

    Русская мера длины - аршин - расстояние между указательным и большим пальцами руки. Однако руки у всех людей разные, и аршин, измеренный рукой взрослого мужчины, отличается от аршина на руке ребенка или женщины. Такое же несоответствие мер длины касается сажени (расстояние между кончиками пальцев расставленных в стороны рук) и локтя (расстояние от среднего пальца до локтя руки).

    Интересно, что в лавки приказчиками брали мужчин небольшого роста. Хитрые купцы экономили ткань при помощи несколько меньших мерил: аршин, локоть, сажень.

    Системы мер

    Такое разнообразие мер существовало не только в России, но и в других странах. Введение единиц измерения зачастую было произвольным, иногда эти единицы вводились только вследствие удобства их измерения. Например, для измерения атмосферного давления ввели мм ртутного столба. Известный в котором использовалась трубка, заполоненная ртутью, позволил ввести такую необычную величину.

    Мощность двигателей сравнивали с (что практикуется и в наше время).

    Различные физические величины измерение физических величин делали не только сложными и недостоверными, но и усложняющими развитие науки.

    Единая система мер

    Единая система физических величин, удобная и оптимизированная в каждой промышленно развитой стране, стала насущной необходимостью. За основу была принята идея выбора как можно меньшего количества единиц, с помощью которых в математических соотношениях можно было бы выразить и другие величины. Такие основные величины не должны быть связаны друг с другом, их значение определяется однозначно и понятно в любой экономической системе.

    Эту проблему решить пытались в различных странах. Создание единой СГС, МКС и другие) предпринималось неоднократно, но эти системы были неудобны либо с научной точки зрения, либо в бытовом, промышленном применении.

    Задачу, поставленную в конце 19 века, решить получилось только в 1958 году. На заседании Международного комитета законодательной метрологии была представлена унифицированная система.

    Унифицированная система мер

    1960 год ознаменовался историческим заседанием Генеральной конференции по мерам и весам. Уникальная система, названная «Systeme internationale d"unites» (сокращенно SI) была принята решением этого почетного собрания. В российской версии эта система названа Система интернациональная (аббревиатура СИ).

    За основу приняты 7 основных единиц и 2 дополнительных. Их численное значение определяется в виде эталона

    Таблица физических величин СИ

    Наименование основной единицы

    Измеряемая величина

    Обозначение

    Интернациональное

    российское

    Основные единицы

    килограмм

    Сила тока

    Температура

    Количество вещества

    Сила света

    Дополнительные единицы

    Плоский угол

    Стерадиан

    Телесный угол

    Сама система не может состоять только из семи единиц, поскольку разнообразие физических процессов в природе требует введения все новых и новых величин. В самой структуре предусмотрено не только внедрение новых единиц, но и их взаимосвязь в виде математических соотношений (их чаще называют формулами размерностей).

    Единица физической величины получается с применением умножения, и деления основных единиц в формуле размерностей. Отсутствие числовых коэффициентов в таких уравнениях делает систему не только удобной во всех отношениях, но и когерентной (согласованной).

    Производные единицы

    Единицы измерения, которые формируются из семи основных, получили название производных. Кроме основных и производных единиц, возникла необходимость введения дополнительных (радиан и стерадиан). Их размерность принято считать нулевой. Отсутствие измерительных приборов для их определения делает невозможным их измерение. Их введение обусловлено применением в теоретических исследованиях. Например, физическая величина «сила» в этой системе измеряется в ньютонах. Поскольку сила - мера взаимного действия тел друг на друга, являющаяся причиной варьирования скорости тела определенной массы, то определить ее можно как произведение единицы массы на единицу скорости, деленную на единицу времени:

    F = k٠M٠v/T, где k - коэффициент пропорциональности, M - единица массы, v - единица скорости, T - единица времени.

    СИ дает следующую формулу размерностей: Н = кг٠м/с 2 , где использованы три единицы. И килограмм, и метр, и секунда отнесены к основным. Коэффициент пропорциональности равен 1.

    Возможно введение безразмерных величин, которые определяются в виде соотношения однородных величин. К таковым можно отнести как известно, равный отношению силы трения к силе нормального давления.

    Таблица физических величин, производных от основных

    Наименование единицы

    Измеряемая величина

    Формула размерностей

    кг٠м 2 ٠с -2

    давление

    кг٠ м -1 ٠с -2

    магнитная индукция

    кг ٠А -1 ٠с -2

    электрическое напряжение

    кг ٠м 2 ٠с -3 ٠А -1

    Электрическое сопротивление

    кг ٠м 2 ٠с -3 ٠А -2

    Электрический заряд

    мощность

    кг ٠м 2 ٠с -3

    Электрическая емкость

    м -2 ٠кг -1 ٠c 4 ٠A 2

    Джоуль на Кельвин

    Теплоемкость

    кг ٠м 2 ٠с -2 ٠К -1

    Беккерель

    Активность радиоактивного вещества

    Магнитный поток

    м 2 ٠кг ٠с -2 ٠А -1

    Индуктивность

    м 2 ٠кг ٠с -2 ٠А -2

    Поглощенная доза

    Эквивалентная доза излучения

    Освещенность

    м -2 ٠кд ٠ср -2

    Световой поток

    Сила, вес

    м ٠кг ٠с -2

    Электрическая проводимость

    м -2 ٠кг -1 ٠с 3 ٠А 2

    Электрическая емкость

    м -2 ٠кг -1 ٠c 4 ٠A 2

    Внесистемные единицы

    Использование исторически сложившихся величин, не входящих в СИ или отличающихся только числовым коэффициентом, допускается при измерении величин. Это внесистемные единицы. Например, мм ртутного столба, рентген и другие.

    Числовые коэффициенты используются для введения дольных и кратных величин. Приставки соответствуют определенному числу. Примером могут служить санти-, кило-, дека-, мега- и многие другие.

    1 километр = 1000 метров,

    1 сантиметр = 0,01 метра.

    Типология величин

    Попытаемся указать несколько основных признаков, которые позволяют установить тип величины.

    1. Направление. Если действие физической величины напрямую связано с направлением, ее называют векторной, иные - скалярные.

    2. Наличие размерности. Существование формулы физических величин дает возможность называть их размерными. Если в формуле все единицы имеют нулевую степень, то их называют безразмерными. Правильнее было бы назвать их величинами с размерностью, равной 1. Ведь понятие безразмерной величины нелогично. Основное свойство - размерность - никто не отменял!

    3. По возможности сложения. Аддитивная величина, значение которой можно складывать, вычитать, умножать на коэффициент и т. д. (например, масса) - физическая величина, являющаяся суммируемой.

    4. По соотношению с физической системой. Экстенсивная - если ее значение можно составить из значений подсистемы. Примером может служить площадь, измеряемая в метрах квадратных. Интенсивная - величина, значение которой не зависит от системы. К таковым можно отнести температуру.

    Изучение физических явлений и их закономерностей, а также использование этих закономерностей в практической деятельности человека связано с измерением физических величин.

    Физическая величина - это свойство, в качественном отношении общее многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.

    Физической величиной является например, масса. Массой обладают разные физические объекты: все тела, все частицы вещества, частицы электромагнитного поля и др. В качественном отношении все конкретные реализации массы, т. е. массы всех физических объектов, одинаковы. Но масса одного объекта может быть в определенное число раз больше или меььше, чем масса другого. И в этом количественном смысле масса есть свойство, индивидуальное для каждого объекта. Физическими величинами являются также длина, температура, напряженность электрического поля, период колебаний и др.

    Конкретные реализации одной и той же физической величины называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Эйфелевой башни есть конкретные реализации одной и той же физической величины - длины и потому являются однородными величинами. Масса данной книги и масса спутника Земли «Космос-897» также однородные физические величины.

    Однородные физические величины отличаются друг от друга размером. Размер физической величины - это

    количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина».

    Размеры однородных физических величин различных объектов можно сравнивать между собой, если определить значения этих величин.

    Значением физической величины называется оценка физической величины в виде некоторого числа принятых для нее единиц (см. с. 14). Например, значение длины некоторого тела, 5 кг - значение массы некоторого тела и т. д. Отвлеченное число, входящее в значение физической величины (в наших примерах 10 и 5), называется числовым значением. В общем случае значение X некоторой величины можно выразить в виде формулы

    где числовое значение величины, ее единица.

    Следует различать истинное и действительное значения физической величины.

    Истинное значение физической величины - это значение величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

    Действительное значение физической величины есть значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

    Нахождение значения физической величины опытным путем при помощи специальных технических средств называется измерением.

    Истинные значения физических величин, как правило, неизвестны. Например, никто не знает истинных значений скорости света, расстояния от Земли до Луны, массы электрона, протона и других элементарных частиц. Мы не знаем истинного значения своего роста и массы своего тела, не знаем и не можем узнать истинного значения температуры воздуха в нашей комнате, длины стола, за которым работаем, и т. д.

    Однако, пользуясь специальными техническими средствами, можно определить действительные

    значеиия всех этих и многих других величин. При этом степень приближения этих действительных значений к истинным значениям физических величин зависит от совершенства применяемых при этом технических средств измерения.

    К средствам измерений относятся меры, измерительные приборы и др. Под мерой понимают средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря - мера массы, линейка с миллиметровыми делениями - мера длины, измерительная колба - мера объема (вместимости), нормальный элемент - мера электродвижущей силы, кварцевый генератор - мера частоты электрических колебаний и др.

    Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдением. К измерительным приборам относятся динамометр, амперметр, манометр и др.

    Различают измерения прямые и косвенные.

    Прямым измерением называют измерение, при котором искомое значение величины находят непосредственно из опытных данных. К прямым измерениям относятся, например, измерение массы на равноплечных весах, температуры - термометром, длины - масштабной линейкой.

    Косвенное измерение - это измерение, при котором искомое значение величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям. Косвенными измерениями являются, например, нахождение плотности тела по его массе и геометрическим размерам, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

    Измерения физических величин основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел или термоэлектрический эффект, для измерения массы тел взвешиванием - явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения. Принципы измерений не рассматриваются в данном пособии. Изучением принципов и методов измерений, видов средств измерений, погрешностей измерений и других вопросов, связанных с измерениями, занимается метрология.

    Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу .

    Иногда возражают против широкого применения слова «размер», утверждая, что оно относится только к длине. Однако заметим, что каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас физической величи­ны (массы). Рассматривая предметы А иВ, можно, например, утверждать, что по длине или размеру длины они отличаются друг от друга (например,А > В). Более точная оценка может быть получена лишь после измерений длины этих предметов.

    Часто в словосочетании «размер величины» слово «размер» опускают или за­меняют его на словосочетание «значение величины».

    В машиностроении широко применяют термин «размер», подразумевая под ним значение физической величины - длины, свойственной какой-либо детали. Это значит, что для выражения одного понятия «значение физической величины» приме­няются два термина («размер» и «значение»), что не может способствовать упорядоче­нию терминологии. Строго говоря, необходимо уточнить понятие «размер» в маши­ностроении так, чтобы оно не противоречило понятию «размер физической величи­ны», принятому в метрологии. В ГОСТ 16263-70 дано четкое разъяснение по этому вопросу.

    Количественная оценка конкретной физической величины, вы­раженная в виде некоторого числа единиц данной величины, на­зывается «значением физической величины».

    Отвлеченное число, входящее в «значение» величины, называется числовым значением.

    Между размером и значением величины есть принципиальная разница. Размер величины существует реально, независимо от то­го, знаем мы его или нет. Выразить размер величины можно при помощи любой из единиц данной величины, другими словами, при помощи числового значения.

    Для числового значения характерно, что при применении дру­гой единицы оно изменяется, тогда как физический размер вели­чины остается неизменным.

    Если обозначить измеряемую величину через x, единицу вели­чины - черезx 1 , а отношение их-через q 1 , то x = q 1 x 1  .

    Размер величины xне зависит от выбора единицы, чего нель­зя сказать о числовом значении q , которое целиком определяется выбором единицы. Если для выражения размера величиныxвме­сто единицыx 1  применить единицуx 2  , то неизменившийся размерxбудет выражен другим значением:

    x = q 2 x 2  , гдеn 2 n 1 .

    Если в приведенных выражениях применять q= 1, то размеры единиц

    x 1 = 1x 1 иx 2 = 1x 2 .

    Размеры разных единиц одной и той же величины различны. Так, размер килограмма отличается от размера фунта; размер метра-от размера фута и т. п.

    1.6. Размерность физических величин

    Размерность физических величин- это соотношение между единицами величин, входящих в уравнение, свя­зывающее данную величину с другими величинами, через которые она выражается.

    Размерность физической величины обозначается dimA (от лат. dimension –размерность ). Допустим, что физическая величинаА связана сX, Yуравнением A= F(Х, Y). Тогда величиныX, Y, А можно представить в виде

    Х = х [Х]; Y = y [Y]; A = а [A],

    где А, X, Y - символы, обозначающие физическую вели­чину;а, х, y - числовые значения величин (безразмер­ные);[A]; [X]; [Y] - соответствующие единицы данных физических величин.

    Размерности значений физических величин и их еди­ниц совпадают. Например:

    A = X/Y; dim (a) = dim (X/Y) = [ Х ]/[Y].

    Размерность - качественная характеристика физиче­ской величины, дающая представление о виде, природе величины, о соотношении ее с другими величинами, еди­ницы которых принимаются за основные.



    Последние материалы раздела:

    Промокоды летуаль и купоны на скидку
    Промокоды летуаль и купоны на скидку

    Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

    Отслеживание DHL Global Mail и DHL eCommerce
    Отслеживание DHL Global Mail и DHL eCommerce

    DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

    DHL Global Mail курьерская компания
    DHL Global Mail курьерская компания

    Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...