Методы и средства обеспечения электробезопасности. Московский государственный университет печати Специальные средства защиты

5. Электробезопасность

По определению ГОСТ 12.1.009-76: "Электробезопасность − система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опас-ного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества".

Из всей совокупности ОВПФ наиболее травмирующим фактором является электрический ток.

В Российской Федерации ежегодно от электрического тока погибает ~ 2500 человек, откуда риск индиви-дуальной смерти от тока получается равным: 2500/145∙10 6 ≈ 16∙10 -6 , что втрое больше, чем в среднем на Земле (5∙10 -6). Доля электротравм среди всей совокупности несчастных слу-чаев на производстве составляла в России в 80-ые годы прошлого века 11.8% (каждая десятая травма на производстве свя-зана электрическим током).

С момента промышленного использования электри-ческой энергии пристальное внимание было направлено на специфику проявления электри-ческого тока, не обнаруживаемого без непосредственного кон-такта с токоведущей частью, находящейся под напряжением, и тяжесть его воздействия на человека. Многочисленные исследования и инженерно-технические разработки привели в настоящее время к созданию надеж-ной системы защитных мер от поражения током.

^

5.1. Электрический ток


Действие тока на человека.

Ток оказывает термическое, электролитическое и биоло-гическое действие.

По видам поражения воздействие подраз-деляется на:

- электротравмы - местное поражение тканей (ожоги, элек-трические знаки, металлизация кожи);

-электроудары - воздействие тока на весь организм.

По степени воздействия различают:

I степень - судорожные сокращения мышц без потери соз-нания;

II степень - судорожные сокращения мышц, потеря созна-ния;

III степень - потеря сознания, нарушение сердечной и/или дыхательной деятельности;

IV степень - клиническая смерть, т.е. отсутствие дыхания и кровообращения.

^ Факторы , определяющие исход поражения электрическим током:

1.Значение тока I (основной поражающий фактор). Смер-тельным для человека значением тока промышленной часто-ты 50 Гц считается ток

При этом токе вероятность смертельного исхода наступа-ет для 5% людей.

Выделяют три характерных значения тока промышленной частоты при его протекании через человека:


  • пороговый ощутимый 0,6-1,5 мА, при котором появля-ются первые ощущения;

  • пороговый неотпускающий 10-15 мА, при котором че-ловек не может оторваться от токоведущей части под напря-жением (из-за судорог мышц);

  • пороговый фибрилляционный 100 мА, при котором воз-никают хаотические сокращения волокон сердечной мышцы (фибрилл), в результате чего наступает смерть.
При постоянном токе ощутимый пороговый ток составля-ет 5-7 мА. пороговый неотпускающий 50-70 мА, а пороговый фибрилляционный - 300 мА.

2. Напряжение прикосновения U пр, которое, согласно ГОСТ 12.1.009-76, представляет напряжение между двумя точками цепи тока, которых одновременно касается человек.

Напряжение прикосновения, а также электрическое сопро-тивление тела человека существенно влияют на исход пора-жения, так как определяют значение тока, проходящего че-рез тело человека, согласно закону Ома:

U пр = I h ∙R h

В аварийном режиме предельно допустимым напряжени-ем является 20В (при длительности воздействия более 1 с.).

3. Сопротивление тела человека R h . Оно определяется в основном сопротивлением кожи. Сопротивление R h , колеблет-ся у разных людей от 3 кОм до 100 кОм. Согласно ГОСТ 12.1.038-82, в нормальном режиме R h принимается равным 6,7 кОм. В аварийном режиме при расчетах принимается обычно равным 1000 Ом.

4. Длительность воздействия t. Предельно допустимый ток, который может воздейство-вать на человека без особых последствий в интервале време-ни t = 0,2 − 1с, определяется согласно ГОСТ 12.1.038-82 из вы-ражения: I ≈ 50/t, мА. Вероятность тяжелого исхода возрастает при I менее 0,2с, что связано с особенностями кардиоцикла. Поэтому время срабатывания быстродействующей защиты ориентируется на этот промежуток времени.

5. ^ Путь тока через тело человека (петля тока). Наиболее опасна петля тока по пути рука-рука, так как проходит через жизненно важные органы, наименее - нога-нога.

6. Род тока . Постоянный ток менее опасен, чем переменный, что вид-но по значениям пороговых токов, но это справедливо для напряжений менее 250-ЗООВ. Выпрямленный ток из-за нали-чия гармоник опаснее постоянного тока от аккумулятора.

7. ^ Частота тока f. Наиболее опасным является ток с частотой 20-100 Гц. При частотах меньше 20 или больше 100 Гц опасность поражения несколько уменьшается. Ток частотой более 500 кГц являет-ся неопасным с точки зрения электрического удара, но мо-жет вызвать ожоги. В принципе, можно считать, что опас-ность электрического тока в зависимости от частоты умень-шается обратно пропорционально .

8. ^ Контакт в точках акупунктуры . На теле имеются особые точки (точки акупунктуры), куда подходят нервные окончания, в результате чего сопротивле-ние в этих местах резко (на два порядка) снижается по срав-нению с соседними участками. Поэтому подвод тока к точкам акупунктуры резко увеличивает вероятность неблагопри-ятного исхода.

9. ^ Фактор внимания . Известно, что кровообращение центральной нервной системы под влиянием напряженного внимания уси-ливается. Это вызывает повышенное потребление кисло-рода, что, в свою очередь, приводит к увеличению числа элек-тронов в процессах биохимических реакций обмена веществ. Усиленный поток электронов сложнее нарушить импульсом тока. Значит, биосистему автоматического регулирования при усиленном кровообращении нервной системы расстроить сложнее. Сосредоточенный, внимательный к опасности че-ловек менее подвержен воздействию тока.

10. ^ Индивидуальные свойства человека (состояние здоро-вья, масса и пол человека и др.).

11. Условия внешней среды . По Правилам устройства электроустановок (ПУЭ) выде-ляют 3 класса помещений по опасности поражения электри-ческим током:

1 − без повышенной опасности (без признаков повышен-ной и особой опасности);

2 − повышенной опасностью (температура воздуха бо-лее 35"С, относительная влажность более 75%, наличие в воз-духе токопроводящей пыли, токопроводящий пол, возмож-ность одновременного прикосновения к заземленному объек-ту и к корпусу электроустановки);

3 − особо опасные (влажность около 100%, химически ак-тивная среда в воздухе помещения, наличие двух и более при-знаков повышенной опасности).

12. ^ Схема включения человека в цепь тока. Наиболее опасно двухфазное прикосновение, при котором человек касается проводов двух разных фаз (в трехфазной сети), и исход поражения (часто смертельный при напряже-нии 380В) не зависит от режима нейтрали сети.

Наименее опасно однофазное прикосновение к сети с изо-лированной нейтралью. Даже при токопроводящем основа-нии человек теоретически избежит неблагоприятного исхода.

^ Причины поражения электрическим током:

− случайное прикосновение;

− появление напряжения на корпусе электрооборудования;

− появление напряжения на отключенных токоведущих частях;

− напряжение шага.

^ Основные нормативные документы:

Правила устройства электроустановок (ПУЭ);

Правила эксплуатации (ПЭ) электроустановок потребите-лей и Правила техники безопасности (ПТБ) при эксплуата-ции электроустановок потребителей;

ГОСТ 12.1.009-76 ССБТ. Электробезопасность. Термины и оп-ределения;

ГОСТ 12.1.019-79 (СТ СЭВ 4830-84) ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ 12.1.030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.

ГОСТ 12.2.007.0-14-75 ССБТ. Изделия электротехнические. Об-щие требования безопасности;

ГОСТ 12.3.019-80 ССБТ. Испытания и измерения электриче-ские;

ГОСТ 12.3.032-84 ССБТ. Работы электромонтажные;

ГОСТ 12.1.038-82 ССБТ. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.

ГОСТ 12.4.124-83 ССБТ. Средства защиты от статического электричества. Общие технические требования.

Средства защиты.

При разработке средств защиты от опасности поражения электрическим током реализованы следующие принципы обеспечения безопасности:

− снижения опасности (изоляция; применение малых на-пряжений);

− ликвидации опасности (защитное отключение);

− блокировки (оградительные устройства);

− информации (сигнализация, знаки безопасности, пла-каты);

− слабого звена (защитное заземление).

Средства коллективной защиты от электрического тока:

1. Защитное заземление.

2. Зануление.

3. Защитное отключение.

4. Применение малых напряжений.

5. Изоляция.

6. Оградительные устройства.

7. Сигнализация, блокировка, знаки безопасности, плака-ты.

Кроме перечисленных СКЗ, применяются СИЗ (инструмен-ты с изолированными рукоятками, коврики, токоизмерительные клещи и т.п.).

^ Защитное заземление − преднамеренное соединение с зем-лей или ее эквивалентом металлических нетоковедущих час-тей оборудования, не находящихся под напряжением в обыч-ных условиях, но которые могут оказаться над напряжением в результате повреждения изоляции электроустановки.

^ Принцип действия защитного заземления − снижение до безо-пасных значений напряжений прикосновения и шага, обуслов-ленных "замыканием на корпус".

^ Область применения − трехфазные трехпроводные сети на-пряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали. Принципиальная схема защит-ного заземления приведена на рис. 1.

а) б)

Рис. 1. Принципиальная схема защитного заземления.

а) защитное заземление в сети с изолированной нейтралью до 1000В;

б) защитное заземление в сети с заземленной нейтралью выше 1000В.

1 - заземленное оборудование; 2 - заземлитель защитного заземления; 3 - заземлитель рабочего заземления;

r з, r о, - сопротивления соответственно защитного и рабо-чего заземлений.

Заземление или зануление электроустановок является обя-зательным в помещениях без повышенной опасности пора-жения током при переменном напряжении 380В и выше, по-стоянном напряжении − 440В и выше. В помещениях с повы-шенной опасностью и особо опасных необходимо заземлять или занулять установки, начиная с 42В переменного и 110В постоянного напряжения.

Во взрывоопасных помещениях заземление или зануление установок обязательно независимо от напряжения сети.

Сопротивление заземления электроустановок должно быть не более 8; 4; 2 Ом для трехфазной сети с заземленной нейтралью напряжением 220; 380; 660В соответственно. В ста-ционарных сетях до 1000В с изолированной нейтралью со-противление заземления должно быть не более 10 Ом (в со-четании с контролем сопротивления изоляции).

Занулением называется присоединение к неоднократно за-земленному нулевому проводу питающей сети корпусов и дру-гих конструктивных металлических частей электрооборудо-вания, которые нормально не находятся под напряжением, но вследствие повреждения изоляции могут оказаться под напряжением.

Принципиальная схема зануления приведена на рис. 2.

Рис. 2. Принципиальная схема защитного зануления.

1 – корпус; 2 − аппараты для защиты от токов короткого замыкания (предохра-нители);

Ro − сопротивление зазем-ления нейтрали сети; Rn − сопротивление пов-торного заземления нулевого провода; I − ток короткого замы-кания.

Принцип действия зануления − превращение пробоя на кор-пус в короткое однофазное замыкание (т.е. замыкание между фазным и нулевым проводами) с целью создания большого тока, способного обеспечить срабатывание защиты и тем самым отключить автоматически поврежденную установку из сети.

^ Область применения − трехфазные четырехпроводные сети напряжением до 1000В с глухозаземленной нейтралью.

Первая помощь при поражении электрическим током долж-на оказываться немедленно (в течение первой минуты). Не-обходимо определить, что произошло, освободить (при необ-ходимости) пострадавшего от поражающего действия элек-трического тока; установить наличие дыхания, пульса, шока; организовать вызов скорой помощи; при необходимости, про-водить реанимационные мероприятия: искусственное дыха-ние, непрямой массаж сердца.

^

5.2. Статическое электричество


Статическое электричество − совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт.

^ Опасность воздействия статического электричества проявляется в искровых разря-дах, которые могут явиться причиной воспламенения горю-чих веществ и взрывов, а также отрицательного воздействия на организм человека (слабые толчки, умеренный или силь-ный укол).

Статическое электричество может нарушать технологические процессы, создавать помехи в электронных приборах автоматики.

В производственных условиях накопление зарядов стати-ческого электричества происходит в следующих случаях:

1. При наливе электризующихся жидкостей (этилового эфира, бензола, бензина, спирта) в незаземленные резервуа-ры.

2. Во время протекания жидкостей по трубам, изолиро-ванным от земли.

3. При выходе из сопел сжиженных или сжатых газов.

4. Во время перевозки жидкостей в незаземленных цистер-нах и бочках,

5. При фильтрации через пористые перегородки или сет-ки.

6. При движении пылевоздушных смесей в незаземленных трубах и аппаратах.

7. В процессе перемешивания веществ в смесителях.

8. При механической обработке пластмасс (диэлектриков) на станках и вручную.

9. В ременных передачах во время трения ремней о шки-вы.

Основные методы защиты от статического электричества реализуют принцип слабого звена. Для предотвращения на-копления зарядов предусматривают:


  • защитное заземление;

  • добавки к обрабатываемым материалам антистатиков;

  • увеличение относительной влажности воздуха до 70%;

  • для людей - применение СИЗ (токопроводящей обуви, перил, поручней).

5.3. Молниезащита

Опасность поражения молнией заключается в прямом уда-ре и во вторичном проявлении молнии вследствие электро-статической и электромагнитной индукции. Сила тока в мол-нии − до 200000 А; температура канала − 6000 − 10000 о С. Наи-более подвержены поражению высокие объекты (трубы, мачты, ЛЭП).

Нормативный документ, в соответствии, с которым опре-деляются мероприятия по защите от молний, − СН 305-77, а также "Инструкция по устройству молниезащиты зданий и сооружений" РД 34.21 122-87.

Молниезащитой называется комплекс защитных устройств, предназначенных для обеспечения безопасности людей, со-хранности зданий и сооружений, оборудования и материалов от возможных взрывов, загорании и разрушений, вызванных электрическим, тепловым или механическим воздействием молнии.

Физическая сущность молниезащиты заключается в на-правлении потока электричества по специальному провод-нику − молниеотводу от защищаемого объекта в землю для дальнейшего растекания тока.

Зона защиты молниеотвода − это часть пространства, внут-ри которого здание или сооружение защищено от прямых уда-ров молнии с определенной степенью надежности (зона за-щиты А − 99,5%; Б − 95% и выше).

Зона защиты одиночного молниеотвода представлена на рис.3.

Рис. 3. Зона защиты единичного стержневого молниеотвода:

1 - граница зоны защиты на уровне высоты объекта; 2 - то же, на уровне земли; h - высота молниеотвода; h 0 - высота конуса защиты; h x - высота защищаемого объекта; r x - радиус зоны защиты на уровне высоты объекта; r 0 - радиус зоны зашиты объекта на уровне земли. Зона защиты для данного молниеотвода представляет собой конус высотой h 0 с радиусом основания на земле r 0 .

Зона защиты одиночного стержневого молниеотвода вы-сотой h≤150 м представляет со-бой круговой конус с вершиной на высоте ho = 0,85h и с радиу-сом у основания r o ≈ 1,5h.

Радиус круга защиты r x на высоте защищаемого сооруже-ния:

R x = (1,1 − 0,002h)(h − h x /0,85).

Существуют также зависимости, позволяющие, задаваясь размерами защищаемого объекта (h x и r x), определить величину h. Эта зависимость для зоны Б имеет вид:

H =(r x +1,63 h x)/1,5.

Для молниеотводов других типов зависимости иные.

Кроме одиночного молниеотвода, существуют двойные и многократные стержневые молниеотводы, а также одиночные и двойные тросовые молниеотводы, которые применяются для протяжен-ных защищаемых объектов.

Классификация технических способов и средств защиты от поражения электрическим током установлена ГОСТом 12.1.019-79 (Электробезопасность. Общие требования и номенклатура видов защиты). Эти способы и средства следующие:

1. Применение малого напряжения. Малое напряжение (не более 42 В) применяют, например, для питания ручных переносных ламп и светильников местного освещения в помещениях с повышенной опасностью и особо опасных, а также для питания ручных электрифицированных машин в особо опасных помещениях . При особо неблагоприятных условиях (сырые участки траншей, колодцы и т.п.) для питания ручных переносных ламп применяют напряжение 12 В.

2. Электрическая изоляция токоведущих частей. С течением времени в условиях химически активной среды или в других неблагоприятных условиях эксплуатации электроизоляционные свойства изоляции снижаются, поэтому сопротивление ее нужно периодически контролировать. В случае повреждения рабочей изоляции устраивают дополнительную изоляцию токоведущих частей.

3. Оградительные устройства . Это устройства, предотвращающие прикосновение или приближение на опасные расстояния к токоведущим частям в случаях, когда провода или токоведущие части оборудования не могут иметь изоляции (например, троллейные провода).

4. Предупредительная сигнализация. Звуковой сигнал и красный свет лампы предупреждают о появлении опасности, например, напряжения в электроустановках; зеленый свет оповещает о снятии этого напряжения.

5. Блокировка. Блокирующие устройства защищают от электротравматизма путем автоматического разрыва электрической цепи перед тем, как работающий может оказаться под напряжением.

6. Знаки безопасности . Знаки безопасности (плакаты) подразделяют на:

    предупреждающие : «Стой! Опасно для жизни!», «Осторожно! Электрическое напряжение»;

    указательные : «Заземлено»;

    запрещающие : «Не включать – работают люди», «Опасное электрическое поле. Без средств защиты проход запрещен»;

    предписывающие : «Работать здесь», «Проход здесь».

7. Средства защиты и предохранительные приспособления. Они предназначены для защиты персонала от электротравм при работе на электроустановках. Средства защиты подразделяют на:

а) ограждающие (щиты, временные переносные заземлители);

б) изолирующие (диэлектрические отвертки, изолирующие клещи);

в) вспомогательные (очки).

Предохранительные приспособления – это предохранительные пояса, лестницы и т.д.

8. Выравнивание потенциалов. Это метод снижения напряжение прикосновения и шага между точками электрической цепи, к которым может одновременно прикасаться или на которых может одновременно стоять человек. Практически для выравнивания потенциалов устраивают контурное заземление, т.е. располагают заземлители по контуру вокруг заземленного оборудования.

9. Электрическое разделение сетей. Это разделение сетей на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора.

10 Защитное заземление . Это устранение опасности поражения человека током в случае прикосновения его к нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением.

11. Зануление . Это превращение замыкания на корпус электроустановки в однофазное короткое замыкание, в результате чего срабатывает токовая защита и отключает поврежденный участок.

12. Защитное отключение . Это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.

План лекции:

Введение.

1. Действие электрического тока на организм человека.

2. Первая помощь пострадавшему при поражении электрическим током.

3. Факторы, влияющие на степень тяжести электротравматизма.

4. Классификация помещений по степени опасности поражения людей электрическим током.

5. Основные причины поражения людей электрическим током.

Введение.

Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Электрические установки, используемые на производстве, представляют большую потенциальную опасность. Кроме поражения людей электрическим током нарушение режима работы электроустановок может сопровождаться в отдельных случаях возникновением пожара или взрыва.

Опасность поражения людей электрическим током специфична и усугубляется еще тем, что она не может быть обнаружена органами чувств человека: зрением, слухом, обонянием.

Анализ статических данных показывает, что электротравматизм в общем балансе травматизма на производстве не высок - всего 0,5...1%. Однако по числу случаев со смертельным исходом электротравматизм занимает одно из первых мест, достигая в отдельных отраслях 30...40%. При этом до 80% случаев со смертельным исходом приходится на электроустановки напряжением 127...380 В.

Согласно Правил устройства электроустановок (ПУЭ) все электроустановки по напряжению разделяют на 2 группы: установки напряжением до 1000 В, включительно и свыше 1000 В.

Наибольшее количество электротравм, приходящиеся, как правило, на установки напряжением до 1000 В, объясняется тем обстоятельством, что указанные электроустановки находят повсеместное распространение, и в большинстве случаев обслуживаются они персоналом, не имеющим специальной электрической подготовки.

Практика показывает, что в большинстве случаев при применении электрической энергии опасность возникает из-за нарушения целостности изоляции токоведущих частей. На состояние изоляции существенное влияние оказывает температура и влажность окружающей среды производственных помещений, наличие химически активной среды и ряд других факторов.

Таким образом при эксплуатации электрического оборудования, аппаратуры и приборов большое значение приобретают вопросы защиты обслуживающего персонала и других лиц от опасности поражения электрическим током.

1. Действие электрического тока на организм человека.

Проходя через тело человека, электрический ток оказывает на него сложное действие, являющееся совокупностью термического, электролитического и биологического воздействия.

Термическое действие тока проявляется в ожогах отдельных участков тела, а также в нагреве от высоких температур других органов, приводящем к серьезным функциональным расстройствам.

Электролитическое действие тока выражается в разложении крови и других органических жидкостей, вызывая значительные нарушения их физико-химического состава.

Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе мышцы и мышц легких.

Раздражающее действие тока на ткани живого организма, а следовательно, и обусловленные им непроизвольные судорожные сокращения мышц, может быть прямым, когда ток проходит непосредственно по этим тканям, а в некоторых случаях – рефлекторным, т.е. через центральную нервную систему, когда путь тока лежит вне этих тканей.

Любое из выше перечисленных воздействий может привести к электрической травме, т.е. повреждению организма, вызванному действием на него электрического тока или электрической дуги.

Электротравмы условно можно разделить на два вида: местные электротравмы и электрические удары. Примерно в 55% случаев травмы носят смешанный характер.

Под местными электротравмами понимаются четко выраженные местные нарушения целостности тканей организма. Чаще всего это поверхностные повреждения, т.е. повреждения кожи, а иногда других мягких тканей, а также связок и костей. Обычно местные электротравмы излечиваются и работоспособность восстанавливается полностью или частично.

К местным электротравмам относят электрические ожоги, электрические знаки, металлизацию кожи, электроофтальмию и механические повреждения.

Ожоги являются результатом теплового воздействия электрического тока в месте контакта. Ожоги составляют две трети всех электротравм, причем многие из них сопровождаются другими видами повреждений. Ожоги бывают двух видов - токовый (контактный) и дуговой.

Токовый ожог возникает при прохождении тока непосредственно через тело человека в результате его контакта с токоведущей частью и является следствием преобразования электрической энергии в тепловую. При этом, поскольку кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела, в ней выделяется большая часть тепла. Данное обстоятельство в полной мере подтверждается и законом Джоуля-Ленца:

Q = 0,24  J 2  R  t (1)

где Q – количество выделяющегося тепла, ккал;

J – сила тока, А;

R – сопротивление на пути движения тока (сопротивление тела человека), Ом;

t – время действия тока, сек.

Этим и объясняется, что токовый ожог является, как правило, ожогом кожи в месте контакта тела с токоведущей частью. Токовые ожоги возникают в электроустановках относительно небольшого напряжения - не выше 1...2 кВ, в большинстве случаев они сравнительно легкие и характеризуются обычно 1 или 2 степенью (покраснение кожи, образование пузырей). Иногда возникают и тяжелые ожоги 3 и 4 степеней (омертвление пораженного участка кожи, обугливание тканей).

При более высоких напряжениях между токоведущей частью и телом человека образуется электрическая дуга, которая и обуславливает возникновение дугового ожога. Дуговой жег является результатом воздействия на тело человека электрической дуги, обладающей высокой температурой (свыше 3500 С) и большой энергией. Этот ожог возникает обычно в электроустановках высокого напряжения – выше 1000 В и, как правило, носит тяжелый характер – ожоги 3-ей или 4-ой степени. Электрическая дуга может вызывать обширные ожоги тела, выгорание тканей на большую глубину, обугливание и бесследное сгорание больших участков тела. Зачастую ожоги 3-ей и 4-ой степеней тяжести заканчиваются смертельным исходом.

Электрические знаки (знаки тока или электрические метки) представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергающегося действию тока. Знаки появляются примерно у каждого пятого пострадавшего. Электрические знаки, как правило, безболезненны и их лечение заканчивается благополучно.

Металлизация кожи – проникновение в ее верхние слои мельчайших частиц металла, расплавившегося под действием электрической дуги. Это происходит, в основном, при коротких замыканиях, при отключении разъединителей и рубильников под нагрузкой и т.п. Поврежденный участок кожи имеет шероховатую, жесткую поверхность. По цвету пораженный участок напоминает обычно цвет металла, частици которого проникают в кожный покров. Пострадавший при этом испытывает напряжение кожи от присутствия в ней инородного тела, а также болевые ощущения от ожога за счет тепла занесенного в кожу металла (расплавление частицы металла имеют достаточно высокую температуру – несколько сот С).

Металлизация кожи наблюдается примерно у 10% пострадавших. В большинстве случаев одновременно с металлизацией кожи происходит жег электрической дугой, который почти всегда вызывает более тяжелые поражения.

Электроофтальмия – воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые энергично поглощаются клетками организма и вызывают в них химические изменения. Такое облучение возможно, например, при коротком замыкании, которое сопровождается интенсивным излучением не только видимого света, но и ультрафиолетовых и инфракрасных лучей. Электроофтальмия возникает довольно редко (1...2% пострадавших).

Механические повреждения являются следствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. Такие сокращения могут приводить к нарушению целостности кожного покрова, разрывам кровеносных сосудов, а также вывихам суставов, а порой и к переломам костей. Механические повреждения относят к разряду тяжелых травм, требующих длительного лечения. Они происходят сравнительно редко – примерно у 3% пострадавших.

Электрический удар – это возбуждение живых тканей организма человека проходящим через него электрическим током, сопровождающееся сокращением мышц.

Различают четыре степени электрических ударов:

    судорожные сокращения мышц без потери сознания;

    судорожные сокращения мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

    потеря сознания и нарушение сердечной деятельности или дыхания (либо того или другого вместе);

    клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Человек, находящийся в состоянии клинической смерти, не дышит, его сердце не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет. Однако в этот период почти во всех тканях организма еще продолжаются слабые процессы, достаточные для поддержания минимальной жизнедеятельности.

При клинической смерти первыми начинают погибать чувствительные к кислородному голоданию клетки коры головного мозга - через 5...6 минут. Другие органы перестают функционировать несколько позже: печень и почки через 10...20 минут; мышечная система через 20...30 минут. Если своевременно оказать помощь пострадавшему (искусственное дыхание и непрямой массаж сердца); то возможно восстановление функций организма. В противном случае процесс становится необратимым и клиническая смерть переходит в биологическую смерть.

Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и методов защиты, в том числе знаков безопасности и предупредительных плакатов и надписей. В системах местного освещения, в ручном электрофицированном инструменте и в некоторых случаях применяют пониженное напряжение.

Поскольку состояние окружающей среды (температура, влажность, наличие пыли, паров кислот и щелочей и т.п.) влияет на сопротивление тела человека и сопротивление изоляции, то согласно Правилам устройства электроустановок (ПУЭ) все помещения по опасности поражения электрическим током делятся на три категории.

  • 1. Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих факторов (признаков): сырости, когда относительная влажность превышает 75%; высокой температуры воздуха, превышающей 35 °С; токопроводящей пыли; токопроводящих полов; возможности одновременного прикосновения к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования - с другой.
  • 2. Особо опасные помещения, характеризующиеся наличием одного из трех условий: особой сырости, когда относительная влажность воздуха близка к 100%; химически активной среды, когда содержащиеся пары или образующиеся отложения действуют разрушающе на изоляцию и токоведущие части оборудования; двух и более признаков одновременно, свойственных помещениям с повышенной опасностью.
  • 3. Помещения без повышенной опасности, характеризующиеся отсутствием признаков повышенной и особой опасности.

Защитное заземление предназначено для устранения опасности поражения электрическим током в случае прикосновения к корпусу и к другим нетоковедущим частям электроустановок, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам (рис. 6.5). При этом все металлические нетоковедущие части электроустановок 1 соединяются с землей с помощью заземляющих проводников 2 и заземлителя 3.

Рис. 6.5.

/с3 - сопротивление заземляющего устройства; Д(| - сопротивление тела человека; /?|, /?2 - сопротивление каждой из фаз; /ч - электрический ток, проходящий через тело человека

Заземлитель - это проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей или ее эквивалентом. Заземлители бывают искусственные, предназначенные исключительно для целей заземления, и естественные - находящиеся в земле металлические предметы иного назначения.

Для заземления оборудования в первую очередь используют естественные заземлители: железобетонные фундаменты, а также расположенные в земле металлические конструкции зданий и сооружений.

Защитное заземление применяют в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением свыше 19 000 В как с изолированной, так и с заземленной нейтралью.

С помощью защитного заземления уменьшается напряжение па корпусе относительно земли до безопасного значения, следовательно, уменьшается и сила тока, протекающего через тело человека. На схеме защитного заземления (см. рис. 6.5) показано, что напряжение, приложенное к телу человека в случае прикосновения к оборудованию, можно снизить, уменьшая сопротивление заземляющего устройства. Согласно ПЭУ сопротивление заземления в электроустановках до 1000 В не должно превышать 4 Ом.

Защитное зануление так же, как и защитное заземление, предназначено для устранения опасности поражения электрическим током при замыкании на корпус электроустановок. Защитное зануление осуществляется присоединением корпуса и других конструктивных нетоковедущих частей электроустановок к неоднократному заземленному нулевому проводу (рис. 6.6).

Защитное зануление превращает пробой на корпус в короткое замыкание между фазным и пулевым проводами и способствует протеканию тока большой силы через устройства защиты среды, а в конечном итоге быстрому отключению поврежденного оборудования от сети. Из приведенной схемы (см. рис. 6.6) очевидно, что при замыкании на корпус фаза окажется соединенной накоротко с нулевым проводом, вследствие чего через защиту (плавкий предохранитель или автомат) потечет ток короткого замыкания, который и вызовет перегорание предохранителя или отключение автомата. Чтобы защита быстро срабатывала, ток короткого замыкания дол

Рис. 6.6.

й(і - сопротивление заземления нейтрали источника тока; /?" - сопротивление повторного заземления нулевого защитного проводника; /к - ток короткого замыкания

жен быть достаточно большим. Правила требуют, чтобы ток короткого замыкания был в три раза больше номинального тока плавкой вставки предохранителя или расцепителя автоматического отключения. Это требование выполняется, если нулевой провод имеет проводимость не менее 50% проводимости фазного провода. В качестве нулевых проводов можно использовать стальные полосы, металлические оплетки кабелей, металлоконструкции зданий, подкрановые пути и др.

Системы защитного отключения - это специальные электрические устройства, предназначенные для отключения электроустановок в случае появления опасности пробоя на корпус. Так как основной причиной замыкания па корпус токоведущих частей оборудования является нарушение изоляции, то системы защитного отключения осуществляют постоянный контроль за сопротивлением изоляции или токами утечки между токоведущими и нетоковедущими деталями конструкции оборудования. При достижении опасного уровня оборудование отключается до того момента, когда произойдет пробой на корпус и появится реальная опасность поражения электрическим током.

Повышение электробезопасности достигается также путем применения изолирующих, ограждающих, предохранительных и сигнализирующих средств защиты.

Изолирующие электрозащитные средства делятся на основные и дополнительные. Основные изолирующие электрозащитные средства способны длительное время выдерживать рабочее напряжение электроустановки, и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на этих частях. К таким средствам относятся: в электроустановках напряжением до 1000 В - диэлектрические резиновые перчатки, инструмент с изолирующими рукоятками и указатели напряжения до 1000 В (ранее назывались токоискателями); в электроустановках напряжением выше 1000 В - изолирующие штанги, изолирующие и электроизмерительные клещи, а также указатели напряжения выше 1000 В.

Дополнительные изолирующие электрозащитные средства обладают недостаточной электрической прочностью и поэтому не могут самостоятельно защищать человека от поражения током. Их назначение - усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться. К дополнительным изолирующим средствам относятся: в электроустановках напряжением до 1000 В - диэлектрические галоши, коврики и изолирующие подставки; в электроустановках напряжением выше 1000 В - диэлектрические перчатки, боты, коврики, изолирующие подставки.

Ограждающие средства защиты предназначены для временного ограждения токоведущих частей (временные переносные ограждения, щиты, ограждения-клетки, изолирующие накладки, изолирующие колпаки).

Сигнализирующие средства включают запрещающие и предупреждающие знаки безопасности, а также плакаты: запрещающие, предостерегающие, разрешающие, напоминающие. Чаще всего используется предупреждающий знак "Проход запрещен".

Предохранительные средства защиты предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относят: защитные очки, противогазы, специальные рукавицы и т.п.

Электрический ток, проходя через организм человека, оказывает биологическое, электролитическое, тепловое и механическое действие.

Биологическое действие тока проявляется в раздражении и возбуждении тканей и органов. Вследствие этого наблюдаются судороги скелетных мышц, которые могут привести к остановке дыхания, отрывным переломам и вывихам конечностей, спазму голосовых связок.

Электролитическое действие тока проявляется в электролизе (разложении) жидкостей, в том числе и крови, а также существенно изменяет функциональное состояние клеток.

Тепловое действие электрического тока приводит к ожогам кожного покрова, а также гибели подкожных тканей, вплоть до обугливания.

Механическое действие тока проявляется в расслоении тканей и даже отрывах частей тела.

Различают два основных вида поражения организма: электрические травмы и электрические удары. Часто оба вида поражения сопутствуют друг другу. Тем не менее, они различны и должны рассматриваться раздельно.

Электрические травмы - это чётко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, то есть поражения кожи, а иногда других мягких тканей, а также связок и костей.

Опасность электрических травм и сложность их лечения обуславливаются характером и степенью повреждения тканей, а также реакцией организма на это повреждение. Обычно травмы излечиваются, и работоспособность пострадавшего восстанавливается полностью или частично. Иногда (обычно при тяжёлых ожогах) человек погибает. В таких случаях непосредственной причиной смерти является не электрический ток, а местное повреждение организма, вызванное током. Характерные виды электротравм - электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.

Электрические ожоги - наиболее распространенные электротравмы. Они составляют 60-65 %, причем 1/3 их сопровождается другими электротравмами.

Различают ожоги: токовый (контактный) и дуговой.

Контактные электроожоги, т.е. поражения тканей в местах входа, выхода и на пути движения электротока возникают в результате контакта человека с токоведущей частью. Эти ожоги возникают при эксплуатации электроустановок относительно небольшого напряжения (не выше 1 -2 кВ), они сравнительно легкие.

Дуговой ожог обусловлен воздействием электрической дуги, создающей высокую температуру. Дуговой ожог возникает при работе в электроустановках различных напряжений, часто является следствием случайных коротких замыканий в установках от 1000 В до 10 кВ или ошибочных операций персонала. Поражение возникает от перемены электрической дуги или загоревшейся от неё одежды.

Могут быть также комбинированные поражения: контактный электроожог и термический ожог от пламени электрической дуги или загоревшейся одежды, злектроожог в сочетании с различными механическими повреждениями, электроожог одновременно с термическим ожогом и механической травмой.

Электрические знаки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Знаки имеют круглую или овальную форму с углублением в центре. Они бывают в виде царапин, небольших ран или ушибов, бородавок, кровоизлияний в коже и мозолей. Иногда их форма соответствует форме токоведущей части, к которой прикоснулся пострадавший, а также напоминает форму морщин.

В большинстве случаев электрические знаки безболезненны, и их лечение заканчивается благополучно: с течением времени верхний слой кожи и пораженное место приобретают первоначальный цвет, эластичность и чувствительность, Знаки возникают примерно у 20 % пострадавших от тока.

Металлизация кожи - проникновение в ее верхние слои частичек металла, расплавившегося под действием электрической дуги. Это возможно при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой и т.п.

Пораженный участок имеет шероховатую поверхность, окраска которой определяется цветом соединений металла, попавшего под кожу: зеленая - при контакте с медью, серая - с алюминием, сине-зеленая - с латунью, желто-серая - со свинцом. Обычно с течением времени больная кожа сходит и поражённый участок приобретает нормальный вид. Вместе с тем исчезают и все болезненные ощущения, связанные с этой травмой.

Электроофтальмия - воспаление наружных оболочек глаз в результате воздействия мощного потока ультрафиолетовых лучей, вызывающих в клетках организма химические изменения. Такое облучение возможно при наличии электрической дуги (например, при коротком замыкании), которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей. Электроофтальмия возникает сравнительно редко (у 1-2 % пострадавших), чаще всего при проведении электросварочных работ.

Механические повреждения являются следствием резких, непроизвольных судорожных сокращений мышц под действием тока, проходящего через человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. Эти повреждения являются, как правило, серьёзными травмами, требующими длительного лечения. К счастью они возникают редко - не более чем у 3 % пострадавших от тока.

Электрический удар - это возбуждение живых тканей электрическим током, проходящим через организм, сопровождающееся непроизвольными судорожными сокращениями мышц. В зависимости от исхода отрицательного воздействия тока на организм электрические удары могут быть условно разделены на следующие четыре степени:

I - судорожное сокращение мышц без потери сознания;

II - судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

III - потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

IV - клиническая смерть, то есть отсутствие дыхания и кровообращения.

Клиническая (или «мнимая») смерть - переходный период от жизни к смерти, наступающей с момента прекращения деятельности и лёгких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни, он не дышит, сердце его не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет. Однако в этот период жизнь в организме ещё полностью не угасла, ибо ткани его умирают не сразу и не сразу угасают функции различных органов.

Первыми начинают погибать очень чувствительные к кислородному голоданию клетки головного мозга, с деятельностью которого связаны сознание и мышление. Поэтому длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга; в большинстве случаев она составляет 4-5 мин, а при гибели здорового человека от случайной причины, например, от электрического тока, - 7-8 мин.

Биологическая (или истинная) смерть - необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур; она наступает по истечении периода клинической смерти.

Причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Прекращение сердечной деятельности является следствием воздействия тока на мышцу сердца. Такое воздействие может быть прямым, когда ток протекает непосредственно в области сердца, и рефлекторным, то есть через центральную нервную систему, когда путь тока лежит вне этой области. В обоих случаях может произойти остановка сердца или наступить его фибрилляция, то есть хаотически быстрые и разновременные сокращения волокон (фибрилл) сердечной мышцы, при которых сердце перестаёт работать как насос, в результате чего в организме прекращается кровообращение.

Электрический шок - своеобразная тяжёлая нервно-рефлекторная реакция организма в ответ на сильное раздражение электрическим током, сопровождающаяся опасными расстройствами кровообращения, дыхания, обмена веществ и т.п. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель организма в результате полного угасания жизненно важных функций или полное выздоровление как результат своевременного активного лечебного вмешательства.

Тяжесть поражения электрическим током зависит от целого ряда факторов: значения силы тока, электрического сопротивления тела человека и длительности протекания через него тока, пути тока, рода и частоты тока, индивидуальных свойств человека и условий окружающей среды. Сила тока является основным фактором, обусловливающим ту или иную степень поражения человека (путь: рука-рука, рука-ноги).

Электрическое сопротивление организма человека падает при увеличении тока и длительности его прохождения вследствие усиления местного нагрева кожи, что приводит к расширению сосудов, а, следовательно, к усилению снабжения этого участка кровью и увеличению выделения пота.

С повышением напряжения, приложенного к телу человека, уменьшается сопротивление кожи, а, следовательно, и полное сопротивление тела, которое приближается к своему наименьшему значению 300-500 Ом. Это объясняется пробоем рогового слоя кожи, увеличением тока, проходящего через нее, и другими факторами.

Сопротивление тела человека зависит от пола и возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Это объясняется толщиной и степенью огрубления верхнего слоя кожи. Кратковременное (на несколько минут) снижение сопротивления тела человека (20-50 %) вызывает внешние, неожиданно возникающие физические раздражения. К ним относят: болевые (удары, уколы), световые и звуковые.

На электрическое сопротивление влияют также род тока и его частота. При частотах 10-20 кГц верхний слой кожи практически утрачивает сопротивление электрическому току.

Кроме того, есть особенно уязвимые участки тела к действию электрического тока. Это так называемые акупунктурные зоны (область лица, ладони и др.) площадью 2-3 мм2. Их электрическое сопротивление всегда меньше электрического сопротивления зон, лежащих вне акупунктурных зон.

Длительность протекания тока через тело человека очень сильно влияет на исход поражения в связи с тем, что с течением времени падает сопротивление кожи человека, более вероятным становится поражение сердца. Путь тока через тело человека также имеет существенное значение.

Наибольшая опасность возникает при непосредственном прохождении тока через жизненно важные органы. Статистические данные показывают, что число травм с потерей сознания при прохождении тока по пути «правая рука-ноги» составляют 87 %; по пути «нога-нога» - 15%, Наиболее характерные цепи тока через человека: рука-ноги, рука-рука, рука-туловище (соответственно 56,7; 12,2 и 9,8 % травм). Но наиболее опасными считаются те цепи тока, при которых вовлекаются обе руки - обе ноги, левая рука-ноги, рука-рука, голова-ноги.

Род и частота тока также влияют на степень поражения. Наиболее опасным является переменный ток частотой от 20 до 1000 Гц. Переменный ток опаснее постоянного, но это характерно только для напряжений до 250 -300 В; при больших напряжениях становится опаснее постоянный ток. С повышением частоты переменного тока, проходящего через тело человека, полное сопротивление тела уменьшается, а проходящий ток увеличивается. Однако уменьшение сопротивления возможно лишь в пределах частот от 0 до 50-60 Гц. Дальнейшее же повышение частоты тока сопровождается снижением опасности поражения, которая полностью исчезает при частоте 450-500 кГц. Но эти токи могут вызывать ожоги, как при возникновении электрической дуги, так и при прохождении их непосредственно через тело человека. Снижение опасности поражения током с повышением частоты практически заметно при частоте 1000-2000 Гц.

Индивидуальные свойства человека и состояние окружающей среды также оказывают заметное влияние на тяжесть поражения. Поражение человека электротоком или электрической дугой может произойти в следующих случаях:

  • · при однофазном (однократном) прикосновении изолированного от земли человека к неизолированным токоведущим частям электроустановок, находящимся под напряжением;
  • · при одновременном прикосновении человека к двум неизолированными частям электроустановок, находящимся под напряжением;
  • · при приближении человека, не изолированного от земли, на опасное расстояние к токоведущим, не защищенным изоляцией частям электроустановок, находящихся под напряжением;
  • · при прикосновении человека, не изолированного от земли, к нетоковедущим металлическим частям (корпусам) электроустановок, оказавшихся под напряжением из-за замыкания на корпусе;
  • · при действии атмосферного электричества во время разряда молнии;
  • · в результате действия электрической дуги;
  • · при освобождении другого человека, находящегося под напряжением.

Можно выделить следующие причины электротравм:

Технические причины - несоответствие электроустановок, средств защиты и приспособлений требованиям безопасности и условиям применения, связанное с дефектами конструкторской документации, изготовления, монтажа и ремонта; неисправности установок, средств защиты и приспособлений, возникающие в процессе эксплуатации;

Организационно-технические причины - несоблюдение технических мероприятий безопасности на стадии эксплуатации (обслуживания) электроустановок; несвоевременная замена неисправного или устаревшего оборудования и использование установок, не принятых в эксплуатацию в предусмотренном порядке (в том числе самодельных);

Организационные причины - невыполнение или неправильное выполнение организационных мероприятий безопасности, несоответствие выполняемой работы заданию;

Организационно-социальные причины:

  • - работа в сверхурочное время (в том числе работа по ликвидации последствий аварий);
  • - несоответствие работы специальности;
  • - нарушение трудовой дисциплины;
  • - допуск к работе на электроустановках лиц моложе 18 лет;
  • - привлечение к работе лиц, неоформленных приказом о приеме на работу в организацию;
  • - допуск к работе лиц, имеющих медицинские противопоказания.

При рассмотрении причин необходимо учитывать так называемые человеческие факторы. К ним относятся как психофизиологические, личностные факторы (отсутствие у человека необходимых для данной работы индивидуальных качеств, нарушение его психологического состояния и пр.), так и социально-психологические (неудовлетворительный психологический климат в коллективе, условия жизни и пр.).

Согласно требованиям нормативных документов, безопасность электроустановок обеспечивается следующими основными мерами:

  • · надлежащей, а в отдельных случаях повышенной (двойной) изоляцией;
  • · заземлением или занулением корпусов электрооборудования и элементов электроустановок, могущих оказаться под напряжением;
  • · надежным и быстродействующим автоматическим защитным отключением;
  • · применением пониженных напряжений (42 В и ниже) для питания переносных токоприемников;
  • · защитным разделением цепей;
  • · блокировкой, предупредительной сигнализацией, надписями и плакатами;
  • · применением защитных средств и приспособлений;
  • · проведением планово-предупредительных ремонтов и профилактических испытаний электрооборудования, аппаратов и сетей, находящихся в эксплуатации;
  • · проведением ряда организационных мероприятий (специальное обучение, аттестация и переаттестация лиц электротехнического персонала, инструктажи и т.д.).

Для обеспечения электробезопасности на предприятиях мясной и молочной промышленности применяют следующие технические способы и средства защиты: защитное заземление, зануление, применение малых напряжений, контроль изоляции обмоток, средства индивидуальной защиты и предохранительные приспособления, защитные отключающие устройства.

Защитное заземление - это преднамеренное электрическое соединение с зёмлёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно защищает от поражения электрическим током при прикосновении к металлическим корпусам оборудования, металлическим конструкциям электроустановки, которые вследствие нарушения электрической изоляции оказываются под напряжением.

Сущность защиты заключается в том, что при замыкании ток проходит по обеим параллельным ветвям и распределяется между ними обратно пропорционально их сопротивлениям. Поскольку сопротивление цепи «человек-земля» во много раз больше сопротивления цепи «корпус-земля», сила тока, проходящего через человека, снижается. В зависимости от места размещения заземлителя относительно заземляемого оборудования различают выносные и контурные заземляющие устройства.

Выносные заземлители располагают на некотором расстоянии от оборудования, при этом заземлённые корпуса электроустановок находятся на земле с нулевым потенциалом, а человек, касаясь корпуса, оказывается под полным напряжением заземлителя.

Контурные заземлители располагают по контуру вокруг оборудования в непосредственной близости, поэтому оборудование находится в зоне растекания тока. В этом случае при замыкании на корпус потенциал грунта на территории электроустановки (например, подстанции) приобретает значения, близкие к потенциалу заземлителя и заземленного электрооборудования, и напряжение прикосновения снижается.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. При таком электрическом соединении, если оно надежно выполнено, всякое замыкание на корпус превращается в однофазное короткое замыкание (т.е. замыкание между фазами и нулевым проводом). При этом возникает ток такой силы, при которой обеспечивается срабатывание защиты (предохранителя или автомата) и автоматическое отключение поврежденной установки от питающей сети.

Малое напряжение - напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Малые напряжения переменного тока получают с помощью понижающих трансформаторов. Его применяют при работе с переносным электроинструментом, при использовании переносных светильников во время монтажа, демонтажа и ремонта оборудования, а также в схемах дистанционного управления.

Изолирование рабочего места - это комплекс мероприятий по предотвращению возникновения цепи тока человек-земля и увеличению значения переходного сопротивления в этой цепи. Данная мера защиты применяется в случаях повышенной опасности поражения электрическим током и обычно в комбинации с разделительным трансформатором.

Выделяют следующие виды изоляции:

  • · рабочая - электрическая изоляция токоведущих частей электроустановки, обеспечивающая её нормальную работу и защиту от поражения электрическим током;
  • · дополнительная - электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;
  • · двойная - электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Двойная изоляция заключается в одном электроприёмнике двух независимых одна от другой ступеней изоляции (например, покрытие электрооборудования слоем изоляционного материала - краской, пленкой, лаком, эмалью и т.п.). Применение двойной изоляции наиболее рационально, когда в дополнение к рабочей электрической изоляции токоведущих частей корпус электроприёмника изготавливается из изолирующего материала (пластмассы, стекловолокна).

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током.

Оно должно обеспечить автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, не допустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Защитное отключение рекомендуется в качестве основной или дополнительной меры защиты, если безопасность нельзя обеспечить при заземлении или занулении, либо если заземление или зануление трудно выполнимо, либо нецелесообразно по экономическим соображениям. Устройства (аппараты) для защитного отключения в отношении надежности действия должны удовлетворять специальным техническим требованиям.

Средства индивидуальной защиты делятся на изолирующие, вспомогательные и ограждающие.

Изолирующие защитные средства обеспечивают электрическую изоляцию человека от токоведущих частей и земли. Они подразделяются на основные (диэлектрические перчатки, инструмент с изолированными рукоятками) и дополнительные (диэлектрические галоши, коврики, подставки)

К вспомогательным можно отнести очки, противогазы, маски, предназначенные для защиты от световых, тепловых и механических воздействий.

К ограждающим относятся переносные щиты, клетки, изолирующие подкладки, переносные заземления и плакаты. Они предназначены в основном для временного ограждения токоведущих частей, к которым возможно прикосновение работающих.

Весь персонал, обслуживающий электроустановки, ежегодно должен обучаться приемам освобождения от электрического тока, выполнению искусственного дыхания и наружного массажа сердца. Занятия проводит компетентный медицинский персонал с отработкой практических действий на тренажерах. Ответственность за организацию обучения несет руководитель предприятия.

Если человек прикасается рукой к токоведущим частям, находящимся под напряжением, то это вызывает непроизвольное судорожное сокращение мышц кисти руки, после чего освободиться от токоведущих частей он самостоятельно уже не в силах. Поэтому первое действие оказывающего помощь - немедленное отключение электроустановки, которой касается пострадавший. Отключение производится с помощью выключателей, рубильников, вывертыванием пробок и другими способами. Если пострадавший находится на высоте, то при отключении установки необходимо следить, чтобы он не упал.

Если отключить установку сложно, то необходимо освободить пострадавшего, используя все средства защиты, чтобы самому не оказаться под напряжением.

При напряжении до 1000 В для освобождения пострадавшего от провода, упавшего на него, можно воспользоваться сухой доской или палкой. Можно также оттянуть за сухую одежду, избегая при этом прикосновения к металлическим частям и открытым участкам тела пострадавшего; действовать необходимо одной рукой, держа вторую за спиной. Надежнее всего оказывающему помощь использовать при освобождении пострадавшего диэлектрические перчатки и резиновые коврики. После освобождения пострадавшего от действия электрического тока необходимо оценить состояние пострадавшего, чтобы оказать соответствующую первую помощь.

Если пострадавший находится в сознании, дыхание и пульс устойчивы, то необходимо уложить его на подстилку; расстегнуть одежду; создать приток свежего воздуха; создать полный покой, наблюдая за дыханием и пульсом. Ни в коем случае нельзя позволять пострадавшему двигаться, так как может наступить ухудшение состояния. Только врач может решить вопрос, что делать дальше. Если пострадавший дышит очень редко и судорожно, но у него прощупывается пульс, необходимо сразу же начать делать искусственное дыхание.

Если у пострадавшего отсутствуют сознание, дыхание, пульс, зрачки расширены, то можно считать, что он находится в состоянии клинической смерти. В этом случае необходимо срочно приступить к оживлению организма с помощью искусственного дыхания по способу «изо рта в рот» и наружного массажа сердца. Если в течение всего 5-6 минут после прекращения сердечной деятельности не начать оживлять организм пострадавшего, то без кислорода воздуха погибают клетки головного мозга и смерть из клинической переходит в биологическую; процесс станет необратимым. Следовательно, пятиминутный лимит времени является решающим фактором при оживлении.

С помощью непрямого массажа сердца в сочетании с искусственным дыханием любой человек может вернуть пострадавшего к жизни или будет выиграно время до прибытия бригады реаниматоров.

Задача

Средний риск гибели жителя Нью-Йорка от огнестрельного оружия составляет 1,5?10-5 год. Насколько эта величина отличается для россиянина, если известно, что за последние два го-да в России погибло от огнестрельного оружия 30 тыс. чел.? Количество жителей России 120 млн. чел.

Индивидуальный риск обусловлен вероятностью реализации потенциальных опасностей при возникновении опасных ситуаций. Его можно определить по числу реализовавшихся факторов риска:

где Rи - индивидуальный риск; P - число пострадавших (погибших) в единицу времени t от определенного фактора риска f; L - число людей, подверженных соответствующему фактору риска f в единицу времени t.

Rи = (30000/2)/ 120000000 =1,25?10-4

  • 1,25?10-4 - 1,5?10-5= 1,1?10-4
  • 1,25?10-4 /1,5?10-5= 8,33 раз

В России средний риск гибели от огнестрельного оружия больше, чем в Нью-Йорке на 1,1?10-4 или в 8,33 раза.

безопасность жизнедеятельность электротравма



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...