Как устроен цифровой фотоаппарат. Устройство фотоаппарата. Из чего состоит фотоаппарат

| 0 Comments

Устройство большинства зеркальных цифровых фотоаппаратов – это фотокамера, в которой объектив для захвата изображений и объектив видоискателя один и тот же, в фотоаппарате также используется и цифровая матрица, необходимая для записи изображений. В фотоаппаратах незеркального типа изображение попадает в видоискатель посредством маленького отдельного объектива, который чаще всего располагается над основным. Также имеется отличие и от обыкновенного устройства фотоаппарата (так называемой мыльницы), где на экране отображается изображение, которое непосредственно попадает на матрицу.


Устройство фотоаппарата и его принцип действия обычно таковы, что свет проходит сквозь объектив. После этого он попадает на диафрагму, за счет которой регулируется его количество, после чего свет, в устройстве зеркального цифрового фотоаппарата, доходит до зеркала, отражается от него, проходит сквозь призму, чтобы его перенаправить в видоискатель. Посредством информационного экрана к изображению добавляется дополнительная информация об экспозиции и кадре (это зависит уже от модели конкретного аппарата).

В тот момент, когда осуществляется фотографирование, зеркало конструкции фотоаппарата поднимается, затвор фотоаппарата открывается. В этот момент прямо на матрицу фотокамеры попадает свет и осуществляется фотографирование или, если говорить более научными терминами, – экспонирование кадра. После этого затвор закрывается, зеркало опускается обратно, и можно делать следующий снимок. Следует понимать, что внутри фотокамеры весь этот, казалось бы, сложный по описанию процесс занимает всего лишь доли секунды.

С момента создания первого устройства фотосъемки, практически не было внесено никаких изменений в основную схему его работы. Через отверстие проходит свет, масштабируется, и поступает на светочувствительный элемент, установленный внутри камеры. Данный принцип одинаков, как для цифровых зеркальных агрегатов, так и для пленочных камер.

Так в чем же состоят различия в конструкции цифрового зеркального фотоаппарата и в чем заключаются его преимущества?

Зеркальный фотоаппарат, по большому счету, отличается от не зеркальных тем, что в последних отсутствует специальное зеркало. Данное зеркальце дает возможность фотографу видеть в видоискателе совершенно такую же картинку, которая попадает на матрицу или пленку.

В чем заключаются отличия между цифровым зеркальным фотоаппаратом и зеркальным пленочным фотоаппаратом?

  1. Первое отличие здесь совершенно очевидно: в зеркальной цифровой фотокамере для записи на карту памяти изображения применяется электроника, в то время, как устройство фотоаппарата пленочного зеркального типа осуществляет захват изображения на пленку.
  2. Вторая отличительная черта состоит в том, что подавляющее большинство зеркальных цифровых фотоаппаратов осуществляют запись изображений на поверхность матрицы, площадь которой меньше, нежели кадр в пленочных зеркальных камерах.
  3. Устройство цифровых фотоаппаратов позволяет фотографам просматривать полученные изображения сразу же после осуществления съемки.
  4. Для более старых моделей пленочных аппаратов не нужно электрическое питание. Они целиком состоят из механики. А вот зеркальным цифровым фотокамерам для работы необходимы аккумуляторы либо сменные батарейки.
  5. При работе с пленкой, кадр лучше будет немного переэкспонировать, а, в случае с цифровыми фотокамерами, наоборот, – немного недоэкспонировать кадр.
  6. В независимости от того, какой используется фотоаппарат – пленочный или цифровой, оба типа агрегатов обладают огромными возможностями по смене пультов дистанционного управления, объективов, элементов питания, вспышек и ряда других аксессуаров.

Из чего состоит современный фотоаппарат

Для начала, рассмотрим в общих чертах устройство современной фотокамеры. Думаю всем уже известно, что любой фотоаппарат конструктивно представляет собою камеру-обскуру – темная коробка, в одной из стенок которой имеется отверстие. На противоположной стенке от данного отверстия установлена матрица – светочувствительный сенсор. Для облегчения процесса создания фотоснимков, а также повышения оптических характеристик аппарата, современные камеры-обскуры оборудуются также дополнительными компонентами.

Основными частями современных фотоаппаратов являются:

  1. Объектив – представляет собой набор плит, посредством которых осуществляется преломление световых лучей на пленку (или матрицу), что придает изображению четкость;
  2. Затвор – устанавливается между матрицей и объективом, представляет собою непрозрачную плоскость, которая может закрываться и открываться с большой скоростью, регулируя, тем самым, время засветки матрицы (так называемая «выдержка»);
  3. Диафрагма – круглое изменяемое отверстие, обычно устроенное внутри объектива, за счет которого определяется количество поступающего на матрицу фотоаппарата света.

Теперь, когда ознакомились в общих чертах, рассмотрим более подробно устройство фотоаппарата, а также принцип работы и назначение каждого из указанных выше конструктивных частей фотокамеры.

Объектив

Это самая важная часть любого аппарата, поэтому необходимо уделить ему особенное внимание.

Объектив – это оптическое устройство, за счет которого осуществляется проецирование изображения на плоскости. Объектив состоит обычно из набора линз, которые собраны внутри оправы в единую систему.

Объективы хорошего качества должны давать на пленке геометрически правильное, резкое изображение объектов фотосъемки по всему полю кадра, для которого он предназначается. Производство объективов требует очень высокой точности, и на заводе осуществляется проверка качества каждого выпускаемого объектива. Современные объективы – это очень сложная система оптических линз. Обычная собирательная линза может также быть использована в качестве объектива (таким образом, и поступали первые фотографы), но, ввиду свойственного ей большого числа недостатков, фотоснимок получается резким лишь в небольшой центральной части и размытым, абсолютно нерезким по краям, прямые же линии на краях изображения, при этом, получаются изогнутыми. Комбинирование линз дает возможность избавиться от большей части перечисленных нами недостатков и неточностей.

Выбираем первый объектив для своего фотоаппарата

Когда вы планируете и выбираете зеркальный фотоаппарат, который в дальнейшем хотите приобрести, сразу же рекомендую подумать и об объективе. Одна и та же модель фотокамеры продаваться может как без объектива как такового, так и может быть укомплектована каким-нибудь приспособлением (на выбор производителя). Как правило, комплект фотокамеры с объективом обойдется менее дорого, нежели приобретение по отдельности этих же компонентов. Но может выйти и такая ситуация, что предлагаемый производителем объектив вас не устроит по каким-нибудь характеристикам.

Свой первый объектив необходимо выбирать из соображений его универсальности. В идеале – это должен быть объектив, который можно будет использовать для всех случаев. И от того, насколько широки будут его возможности, зависит, насколько быстро вы поймете, в каком жанре чаще всего вы снимаете, и какой специализированный объектив необходимо будет приобрести в дальнейшем. Большинство объективов выпускаются со стандартной резьбой, и устройство фотоаппарата позволяет без затруднений осуществлять замену объективов.

Даже тогда, когда вы уже приобретете отдельные объективы для каждого особого случая (портретник, макрик, телевик или ширик), то, вероятнее всего, в 99 процентах случаев вы все равно будете продолжать фотографировать универсальным объективом. Специализированные объективы бывают необходимы довольно-таки редко, но когда такой момент настает, они отрабатывают, как говорится, на все 100, и никакой универсальный объектив заменить их неспособен.

Можно, таким образом, подвести итог, что имеет смысл отнестись очень серьезно и тщательно к выбору первого объектива, чтобы он, после приобретения следующего, не оказался навсегда лежать в длинном ящике. Это особенно актуально для людей, которые много путешествуют, и им приходится снимать множество абсолютно разных сцен. Ведь в дорогу, вы согласитесь, неудобно брать лишний вес. Тем более, если его вполне можно заменить.

Диафрагма

Если вы заглянете внутрь объектива, то сможете увидеть там несколько лепестков в форме дуги. Это и есть диафрагма.

Термин «диафрагма» имеет греческое происхождение, и означает буквально «перегородка». Другое его название, уже от английского, – «апертура» – устройство, которое позволяет регулировать светосилу объектива, изменять действующее отверстие, соотношение яркости оптического изображения объекта фотосъемки к яркости собственно самого объекта.

При помощи специального привода можно свести к центру лепестки диафрагмы, за счет чего его действующее отверстие будет уменьшено. По мере уменьшения действующего отверстия диафрагмы, происходит уменьшение светосилы объектива, а также увеличивается выдержка во время съемки.

При изменении значения на одну ступень, происходит изменение диаметра отверстия диафрагмы в порядка 1,4 раз, а количество же света, который попадает на матрицу, изменяется в два раза.

Так каково же основное назначение диафрагмы и зачем данное приспособление вообще включено в устройство фотоаппарата? С одной стороны, с уменьшением рабочего (действующего) отверстия объектива, происходит ослабление светосилы. Данное свойство может нам пригодиться во время съемки объектов слишком большой яркости, к примеру, снежной поляны в ясный день либо залитого солнцем пляжа.

Скорее всего каждый человек, который читал статьи, касаемо устройства современных и не только фотокамер, задавал себе вопрос – а почему в схемах коробка указана с чувствительным элементом, объектив с линзами, и даже затвор удостоился места в данных описаниях, а про диафрагму же не сказано ничего. А все очень просто: фотокамера способна делать снимки и без помощи диафрагмы. Вот оно как получается! Заинтригованы?

Если говорить простыми словами, диафрагма – это перегородка. Как я говорил ранее, она является экспопарой вместе с выдержкой: диафрагма может быть открыта, а выдержка сделана более краткой, а можно и наоборот – отверстие диафрагмы сделать меньшим размером и увеличить продолжительность выдержки. Экспопара, на первый взгляд, является взаимозаменяемой – как диафрагма, так и выдержка оказывает определенное влияние на количество света, пропускаемого на светочувствительный элемент фотокамеры, но это лишь на первый взгляд. На что диафрагма оказывает влияние в первую очередь, так это на глубину резко изображаемого пространства (далее ГРИП), или, говоря более простым языком, – на глубину резкости. Именно по этой причине для фотографа диафрагма является очень функциональным рычагом, способствующим достижению требуемого творческого эффекта.

Я не буду мучить вас различными заумными определениями типа «диафрагма является прямопропорциональной квадрату корня такого-то значения…» так как на практике это все не запомнится все равно. Главное, что нужно знать, так это то, что диафрагма обозначается как f, и чем большим будет ее цифровое значение, тем меньшим будет относительное отверстие и в обратном направлении. К примеру, если мы, на объективе с относительным отверстием в 2.8, выставим значение f диафрагмы 2,8, то это и будет означать, что на данном объективе будет полностью открыта перегородка. И это является как раз тем случаем, когда в процессе фотосъемки диафрагма участия не принимает. Свадебные фотографы, да и не только они, очень часто осуществляют съемку на полностью открытой диафрагме. А вообще, принято считать, что чем значение диафрагмы будет меньше, тем более интересно будет вырисован объект.
Конструкция перегородки дает возможность изменения рабочего отверстия объектива.

Но есть также и еще одна практическая характеристика диафрагмы, которая зачастую применяется в процессе художественной фотосъемки. Чем меньше будет установлено значение отверстия диафрагмы, тем большая будет получена глубина резко изображаемого пространства, либо, как еще принято говорить в среде фотографов, глубина резкости, то есть область четкой фокусировки по отношению к объекту фотосъемки. Значение ГРИП напрямую зависит от фокусного расстояния, диафрагмы, размера матрицы, а также от расстояния до объекта. Наиболее эффективным способом управления ГРИП является регулировка диафрагмы.

Устройство фотоаппарата таково, что при работе с различными сюжетами фотосъемки, требуется разная ГРИП.

Теперь поговорим о наиболее главном. Давайте разберемся более тщательно с тем, что нам может дать уменьшение или увеличение размеров отверстия диафрагмы. Чем меньше будет установлено отверстие диафрагмы, тем большей будет глубина ГРИП, или, если кратко, – глубина резкости, область фокусировки вокруг объекта фотосъемки.

К примеру, фотографы, во время съемки пейзажей, закрывают диафрагму максимально возможно, для получения резкого изображения, как удаленных деталей, так и собственно ближнего плана. И наоборот: при портретной съемке используют традиционно малую ГРИП, для отделения человеческого лица от фона фотографии.

Таким образом, одним из важнейших инструментов фотомастера является возможность регулировки глубины резкости при помощи диафрагмы.

В цифровых фотоаппаратах компактного размера, ввиду малого размера матрицы, ГРИП будет велика при любом положении диафрагмы. Данное обстоятельство может помешать реализации определенных творческих идей. Наиболее эффективным методом регулирования ГРИП, как уже было неоднократно сказано, является регулировка положения диафрагмы, точнее – размера ее отверстия.

При открытой диафрагме будет получен эффект размытия заднего фона. Это можете видеть на нашем примере с цветком. Резкость наведена на ближние края цветка. А задняя же часть кадра красиво размыта, что дает зрителю возможность сразу понять творческий замысел фотографа, сделавшего данный снимок.

Низкое значение ГРИП

Данный прием широко используется в портретной фотосъемке, когда профессиональные фотографы делают акцент на лице портретируемого человека, а задняя же часть кадра (фон) должна быть размыта.

За счет низкого ГРИП можно сразу же понять, на что обращает внимание фотограф.

Хотелось бы отметить еще один очень важный момент. Низкая глубина при резко изображаемом пространстве действует не только лишь на расстояние от объекта фотосъемки вдаль, а и в ширину. Данный факт необходимо также принять во внимание и при выборе требуемой диафрагмы. Рассмотрим все это на конкретном примере. Предположим, что вам нужно сделать снимок широкого объекта, либо же группу людей, которые стоят друг к другу плечом, со сравнительно небольшого расстояния. В том случае, если вы решите вдруг сделать снимок с максимально размытым фотом и откроете диафрагму полностью, можете быть готовы к тому, что люди, которые стоят ближе всего к краям кадра, получатся на фото расфокусированы. Из этого можно прийти к выводу, что глубина резкости распространяется по всем сторонам от фокусной точки, которая расположена на оптической оси объектива вашего фотоаппарата.

Затвор

Следующий элемент, входящий в устройство фотоаппарата, – это затвор.

Затвор отмеряет период времени, на протяжение которого на матрицу фотоаппарата воздействует свет. Затвор фотокамеры – это невидимый, но очень важный элемент системы фотоаппарата. Непрофессиональному фотографу затвор фотокамеры не виден, но зато всегда слышен.

Что представляет собой затвор? Для чего он вообще нужен?

Данный конструктивный элемент фотосистемы выполняет одну из главнейших функций захвата изображения на цифровую матрицу или пленку. Основная задача затвора состоит в регулировании прохождения через оптическую систему аппарата на светочувствительный элемент фотокамеры светового потока.

Если вам когда-нибудь приходилось слышать о времени захвата изображений фотокамерой – «выдержке» – то затвор фотоаппарата – это основное устройство, с помощью которого данное время можно контролировать.

Что происходит с затвором в момент фотосъемки?

Затвор фотокамеры представляет собою механическое устройство, которое в большинстве случаев представлено в виде шторки (горизонтальные либо вертикальные). Необходимо понимать тот факт, что существует минимальный период времени, в течении которого данные шторки успеют закрыться и открыться, что позволит световому потоку проэкспонировать кадр, пройдя на матрицу или фотопленку.

Так каким же образом осуществляется работа затвора фотокамеры в тех случаях, когда выдержки становятся, как говорится, сверхкороткими (значение 1/5000 либо 1/7000). На такие случаи в конструкции цифрового фотоаппарата предусмотрен цифровой затвор, регулирование которого осуществляется матрицей и электроникой. Физический затвор фотокамеры на сверхкоротких выдержках успевает закрываться и открываться на своей максимально возможной скорости, в момент чего на матрицу аппарата поступает цифровой сигнал, свидетельствующий о начале захвата изображение, и спустя доли секунды – другой сигнал, уже о прекращении реагирования на свет.

Вы можете спросить: а зачем вообще тогда нужны в фотоаппарате эти шторки, то есть затвор? Так вот, в современных моделях цифровых фотоаппаратов, в большей части случаев, затвор осуществляет функции защиты матрицы камеры от попадания на нее грязи и пыли, что может нанести ей непоправимые повреждения. А матрица является наиболее дорогостоящим элементом всей цифровой фотокамеры. Время, на протяжении которого затвор фотоаппарата, для получения кадра, будет оставаться открытым, принято называть выдержкой. Выдержка связана с общей освещенности снимаемой сцены и со светосилой объектива. Чем меньше светосила объектива и чем темнее объект фотосъемки, тем дольше необходимо сделать выдержку, для получения правильного экспонирования кадра.

Устройство фотоаппаратов, как пленочных, так и современных зеркальных, предусматривает обязательное наличие затвора – механического устройства, в виде двух непрозрачных шторок, которые закрывают матрицу (сенсор). Из-за наличия этих шторок в цифровых зеркальных фотоаппаратах невозможна наводка (визирование) по дисплею – матрица ведь закрыта, и изображение на дисплей передаваться попросту не может. Когда нажимается кнопка спуска, шторки за счет электромагнитов или пружин приводятся в движение, для света открывается доступ, и на сенсоре осуществляется формирование изображения. В цифровых фотокамерах, на которых установлена несъемная оптика, как правило, стоит электронный затвор, то есть матрица, на время экспонирования, попросту включается в режим записи, а в течении же всего остального времени на дисплей выводится сигнал для наводки на объект. Среди преимуществ электронного затвора можно выделить возможность выполнения съемки на сверхкоротких выдержках, которые, в силу инерции, невозможно осуществить в случае с механическим затвором.

В некоторые модели цифровых фотоаппаратов устанавливается затвор комбинированного типа, который при сверхкоротких выдержках работает как электронное устройство, а на более же длинных к процессу подключается механика. В зеркальных фотокамерах современного образце некоторых производителей возможно также визирование по электронному дисплею аппарата. Подобное устройство зеркальных фотокамер позволяет постепенно избавляться им от своих недостатков, без утери характерных для них достоинств.

А как же вспышка?

Чуть было не упустил еще один фактор, который в достаточной мере влияет на экспозицию – это вспышка. Здесь мы рассмотрим в общих чертах только штатную, то есть бортовую «лягушку». Хотя, прошу прощения. На мыльницах это же совсем не «лягушка», ведь она не выпрыгивает. Данная вспышка обладает рядом режимов, которые, в принципе, зависят от режима самого фотоаппарата. Полный список «услуг» вспышка, как правило, может предоставить лишь в тех случаях, когда камера установлена в режиме «AUTO».

Итак, какие же различают режимы.

  1. Автоматический . Вспышка автоматически будет срабатывать (или не срабатывать) по мере необходимости. При этом, регулируется длительность светового импульса, в зависимости от имеющейся освещенности. Удобно это тем, что экономит заряд аккумулятора, но не всегда может быть использовано, таково уж устройство фотоаппарата. К примеру – съемка против света.
  2. Принудительная вспышка . Будет срабатывать всегда, в независимости от уровня освещенности. Не доступна регулировка длительности импульса, то есть вспышка полностью использует свое ведущее число. Может быть использована в большинстве случаев фотосъемки, но расход энергии более высокий, чем при предыдущем режиме.
  3. Медленная синхронизация . Скорость затвора будет установлена, при этом, на более продолжительном значении. При использовании вспышки, стандартная скорость затвора составляет 1/90 с, то есть «90». Это делается для того, чтобы была возможность проработки фона, так как вспышка обычно до него «не добивает».
  4. Без вспышки . При этом режиме вспышка срабатывать не будет. Это делается для того, чтобы не осуществлялась съемка с автоматической вспышкой там, где это не нужно или запрещено, а также для получения некоторых эффектов, где необходим естественный свет. Изображение становится, при этом, более естественным. В продвинутых аппаратах также «открывает» ряд некоторых возможностей, к примеру, расширяется «перечень» значений в выборе установки баланса белого.

Для первый трех указанных выше режимов доступен режим уменьшения «эффекта красных глаз». В данном случае перед основной вспышкой срабатывает серия коротких вспышек без использования затвора. Это делается для того, чтобы у находящихся в темноте людей сузились зрачки, и глазное дно не отражало красный свет. Рационально будет использовать только во время съемки людей, а во всех остальных же случаях – это просто трата времени перед срабатыванием затвора и энергии.

Следует помнить, что использование штатной вспышки будет делать отображение лиц людей и предметов на снимках плоскими. По крайней мере, необходимо стараться сделать снимок под некоторым углом, чтобы появились тени. Но и переусердствовать не нужно, так как при слишком больших углах будет появляться слишком большой контраст.

На этом данную тему спешу завершить, а то и так уже достаточно объемной получилась. Если что-то упустил, рассмотрю в следующих постах.

История развития фототехники привела к тому, что были выработаны определённые стандарты на интерфейс между фотографом и используемой им фототехникой. В результате цифровые фотоаппараты в большинстве своих внешних черт и органах управления повторяют наиболее совершенные модели плёночной техники. Принципиальное различие оказывается в «начинке» аппарата, в технологиях фиксации и последующей обработке изображения.

Основные элементы цифрового фотоаппарата

  • Матрица
  • Объектив
  • Затвор
  • Видеоискатели
  • Процессор
  • Дисплей
  • Вспышка

Устройство зеркального фотоаппарата

Зеркальный цифровой фотоаппарат - это фотоаппарат, в котором объектив видоискателя и объектив для захвата изображения один и тот же, также в фотоаппарате используется цифровая матрица для записи изображения. В не зеркальном фотоаппарата в видоискатель попадает изображение из отдельного маленького объектива, чаще всего находящийся над основным. Отличие также имеется и от обычного устройства фотоаппарата (мыльницы), где отображается на экране изображение, попадающее непосредственно на матрицу.

В обычном устройстве зеркального цифрового фотоаппарата свет проходит через объектив (1). Затем он достигает диафрагмы, которая регулирует его количество (2), затем свет доходит до зеркала в устройстве зеркального цифрового фотоаппарата, отражается и проходит через призму (4), чтобы перенаправить его в видоискатель (5). Информационный экран добавляет к изображению дополнительную информацию о кадре и экспозиции (зависит от модели фотокамеры). В момент, когда происходит фотографирование, зеркало устройства фотоаппарата (6) поднимается, открывается затвор фотоаппарата (7). В этот момент свет попадает прямо на матрицу фотоаппарата и происходит экспонирование кадра - фотографирование. Затем закрывается затвор, обратно опускается зеркало, и фотоаппарат готов к следующему снимку. Необходимо понимать, что весь этот сложный процесс внутри происходит за доли секунды.

C самого создания первого устройство фотоаппарата, основная схема работы его почти не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата. Будь это пленочной камерой или зеркальной цифровой фотокамерой. Рассмотрим основные отличая зеркального фотоаппарата от не зеркального. Как вы могли догадаться главное отличие в наличии специального зеркала. Это зеркальце позволяет фотографу видеть в видоискателе абсолютно такую же картинку, которая попадает на плёнку или матрицу.

Механизм работы цифрового фотоаппарата довольно сложен для неподготовленного читателя, но все-таки кратко опишем его: до нажатия клавиши затвора в зеркальных фотоаппаратах между объективом и матрицей расположено зеркало, отражаясь от которого, свет попадает в видоискатель. В незеркальных фотоаппаратах и зеркальных фотоаппаратах в режиме Live View свет из объектива падает на матрицу, при этом на ЖК экран выводится изображение, сформированное на матрице. В некоторых фотоаппаратах при этом может происходить автоматическая фокусировка. При неполном нажатии клавиши затвора (если такой режим предусмотрен) происходит выбор всех автоматически выбираемых параметров съёмки (фокусировка, определение экспопары, чувствительности фотоматериала (ISO) и т. д.). При полном нажатии происходит съёмка кадра, и считывание информации с матрицы во встроенную память фотоаппарата (буфер). Далее производится обработка полученных данных процессором с учётом установленных параметров коррекции экспозиции, ISO, баланса белого и др., после чего данные сжимаются в формат JPEG и сохраняются на флэш-карту. При съёмке в формат RAW данные сохраняются на флэш-карту без обработки процессором (возможна коррекция битых пикселей и сжатие алгоритмом без потерь). Так как запись на флэш-карту изображения занимает достаточно большое количество времени, многие фотоаппараты позволяют снимать следующий кадр до окончания записи предыдущего на флэш-карту, если в буфере есть свободное место.

Отличие устройства зеркального цифрового фотоаппарата от пленочного зеркального фотоаппарата?

1. Первое отличие очевидно: в цифровом зеркальном фотоаппарате используется электроника для записи изображения на карту памяти, в то время как устройство пленочного зеркального фотоаппарата захватывает изображение на пленку.

2. Второе отличие между цифровым и пленочным зеркальным фотоаппаратом в том, что большинство цифровых зеркальных фотоаппаратов записывают изображение на поверхность матрицы, которая по площади меньше, чем кадр в пленочной зеркалке.

3. Устройство цифрового фотоаппарата позволяет фотографу увидеть изображение сразу после съемки.

4. Более старые модели пленочных фотокамер не требуют электрического питания. Они полностью состоят из механики. А цифровым зеркальным фотоаппаратам необходимы батарейки или аккумуляторы.

5. При съёмке на пленку лучше немного переэкспонировать кадр, но для цифрового фотоаппарата лучше немного недоэкспонировать кадр.

6. Независимо от того, цифровой фотоаппарат или пленочный, оба типа фото камер имеют огромные возможности по смене объективов, пультов дистанционного управление, вспышек, элементов питания и других аксессуаров.

Как устроены цифровые зеркальные фотоаппараты? Большинство из них устройство имеют примерно одинаковое. Это, прежде всего, корпус, собственно камера, на которую крепится фотообъектив. Объектив служит для создания изображения на матрице, а матрица - для записи фотографического изображения. В зеркальных аппаратах съемочный объектив так же передает изображение и в видоискатель. Незеркальные аппараты имеют чуть другую схему. Изображение на матрицу и изображение в видоискатель чаще всего передается двумя различными объективами. В этом случае объектив для видоискателя маленький и находится над основным объективом. В самых простых аппаратах, так называемых «мыльницах», на экране дисплея отображается изображение, которое непосредственно попадает на матрицу.

Принцип действия фотоаппарата примерно таков: световой поток проходит сквозь объектив и попадает на диафрагму. Диафрагма регулирует количество попавшего в объектив света и пропускает его дальше, на зеркало. Свет отражается от зеркала и попадает в призму, преломляясь через которую доходит до видоискателя, в котором фотограф и видит то, что находится непосредственно перед объективом. К изображению в видоискателе добавляется и другая полезная информация о снимаемом кадре. Что это за информация, ее количество - это зависит от конкретной модели аппарата. Как говорят, от его наворочености.

В собственно момент фотографирования зеркало, входящее в эту механическую конструкцию, поднимается и открывается затвор фотоаппарата. Именно в этот момент и происходит так называемое экспонирование. Свет попадает на матрицу и создает на ней изображение. После экспонирования затвор закрывается, зеркало опускается на свое место и ваш фотоаппарат готов сделать следующий снимок. Интересно то, что весь этот сложный технологический процесс происходит внутри аппарата за сотые и даже за тысячные доли секунды.

C того дня, как придумали это механическое устройство для фотосъемки, в процесс фотографирования не было внесено ничего принципиально нового. Световой пучок проходит сквозь объектив, масштабируется и попадает на установленный внутри фотоаппарата светочувствительный элемент. Этот принцип одинаков и для пленочных, и для цифровых фотокамер.

В чем заключается различие зеркального и незеркального фотоаппаратов? В чем преимущества зеркалки? Как мы уже сказали, зеркальный аппарат имеет в своей конструкции зеркало, которое позволяет нам в видоискателе видеть точно ту же картинку, что попадает на светочувствительный элемент.

А в чем отличие между зеркальным цифровым и зеркальным пленочным аппаратом? Вот на этом давайте остановимся поподробнее.

  • Первым делом следует сказать, что в зеркальном цифровом фотоаппарате использована электронная система записи изображения. Оно записывается на электронную карту памяти. В плёночном же аппарате изображение сохраняется на фотографической плёнке.
  • Практически все зеркальные фотокамеры записывают изображение на матрицу, поверхность которой меньше чем площадь кадра в пленочном зеркальном фотоаппарате.
  • Устройство цифрового зеркального фотоаппарата таково, что фотограф может сразу просматривать отснятые кадры. Зеркальный пленочный фотоаппарат такой возможности не предоставляет. Полученное изображение мы можем увидеть на фотоплёнке после некоторой химической её обработки.
  • Пленочные зеркалки старых моделей полностью механические. Они не нуждаются в электрическом питании. А современные цифровые зеркальные фотокамеры не могут жить и работать без батареек или аккумуляторных батарей.
  • При съемке зеркальной плёночной камерой кадр лучше немного переэкспонировать, а при работе с цифровой камерой - как раз наоборот: недоэкспозиция выгоднее.
  • Зеркальные фотоаппараты, не зависимо от того, пленочные они или цифровые, позволяют пользоваться множеством всевозможных аксессуаров: сменные объективы, фотовспышки, пульты дистанционного управления и пр.

Как устроен современный цифровой зеркальный фотоаппарат.

Давайте для начала рассмотрим его принципиальное устройство. Каждый современный человек сегодня знает, что основная часть любого фотоаппарата - это светонепроницаемая коробка, которую раньше называли камерой-обскурой. В одной из стенок этой коробки проделано отверстие. На противоположной от отверстия стенке находится светочувствительный сенсор, который называется матрицей. Для того, чтобы создать фотографический снимок, современные фотоаппараты оснащены множеством дополнительных элементов. Основные компоненты конструкции фотокамеры - объектив, затвор и диафрагма.

  1. Объектив - это оптическая конструкция, состоящая из стеклянных (или, в недорогих моделях пластиковых) линз. Световой поток преломляется, проходя сквозь эти линзы, попадает на матрицу или плёнку, что делает изображение качественным.
  2. Затвор - это устройство, чаще механическое, которое установлено между объективом и матрицей. Затвор представляет собой непрозрачную плоскость. Эта плоскость открывается и закрывается с огромной скоростью, чем регулирует доступ света на матрицу. Отрезок времени, на который затвор остается открытым, называется выдержка.
  3. Диафрагма - это круглое отверстие, которое может менять свой диаметр. Она позволяет дозировать количественное поступление света на матрицу фотокамеры. Диафрагма чаще всего установлена внутри объектива, между его линзами.

Ну вот, теперь вы имеете некоторое понятие о современной цифровой зеркальной фотокамере. Теперь давайте изучать это сложнейшее электронно-механическое устройство и принцип его работы более детально. Поговорим о каждом из упомянутых конструктивных элементах поподробнее.

Объектив

Объектив - наиболее важная составляющая любого фотоаппарата. Ему всегда уделяется особое внимание.

Что такое фотографический объектив? Это оптическая система линз, собранная в оправе из металла. Объектив проецирует изображение на плоскость. В цифровом фотоаппарате - на матрицу, в пленочном - на плёнку. Хорошие фотографические объективы должны давать на плёнке или матрице резкое изображение по всей площади кадра, его пропорции должны соответствовать реальным пропорциям объекта съемки. Современный объектив - изделие достаточно сложное технически. Производство объективов - высокотехнологичное и точное производство. На заводах, выпускающих объективы, каждый из них проверяется индивидуально и очень тщательно. В былые времена, на заре фотографии, в фотоаппаратах в качестве объектива использовалась всего одна собирательная линза. Но такой примитивный объектив имел множество недостатков. Например, изображение получалось резким только в центральной части кадра, по краям оно оставалось нерезким и размытым, прямые линии ближе к границам кадра становились изогнутыми. Путем комбинации, подбора линз в одну цельную оптическую систему ученые со временем научились избегать этих недостатков.

Ещё на стадии планирования покупки зеркального фотоаппарата необходимо задуматься об объективе. Дело в том, что одна и та же модель фотокамеры при продаже может комплектоваться различными объективами, а может продаваться и вообще без объектива. Всё зависит от выбора производителя и фирмы-продавца. Обычно покупка фотокамеры в комплекте с объективом обходится несколько дешевле, чем приобретение собственно камеры и объектива раздельно. Но иногда особо придирчивых покупателей предлагаемый комплект по каким либо характеристикам не устраивает.

Для начала рекомендуем выбирать объектив исходя из его универсальности. Проще говоря, это объектив, подходящий для всех видов съемки. От того, как широки будут возможности вашего первого объектива, зависит, как быстро вы поймете на практике, какой ещё объектив вам необходим для тех видов съемки, которым вы будете отдавать приоритет в своей работе. Если вы, например, увлечетесь фотоохотой - то вам будет нужен объектив с большим фокусным расстоянием, если вашей страстью станет съемка портретов - то потребуется объектив, который так и называется - портретный.

Но, даже если у вас и появятся различные объективы, в основном вы будете снимать объективом универсальным. Специализированные объективы - широкоугольники, длиннофокусники и пр. применяются в повседневной практике достаточно редко. Но, тем не менее, зачастую возникают ситуации, когда без специальных объективов не обойтись. И тогда их применение становится очень даже оправданным.

Все объективы в основном выпускаются со стандартной резьбой, что позволяет легко их заменять на разных моделях фотоаппаратов.

Подведём итог. К приобретению своего первого объектива нужно отнестись достаточно серьезно. В противном случае неудачная дорогостоящая покупка так и останется лежать в ящике вашего стола невостребованной. А ведь универсальный объектив как раз тем и хорош, что использовать его можно во всех случаях жизни. Например, в путешествиях, когда любой лишний вес может оказаться в тягость. А объективы - вещь довольно тяжелая.

Диафрагма

Если присмотреться, внутри объектива можно увидеть несколько лепестков, каждый из которых имеет форму дуги. Накладываясь один на другой, они образуют круглое отверстие, диаметр которого можно регулировать. Это устройство называется диафрагма. Сам этот термин имеет греческие корни, и буквально означает «перегородка». В английском языке для обозначения диафрагмы употребляется другой термин: «апертура».

Диафрагма - это устройство, которое регулирует количество света, попадаемого на матрицу или плёнку. Изменяя диаметр отверстия диафрагмы, мы меняем соотношение яркостей создаваемого объективом фотографического изображения. Влияет диафрагма и на яркость самого объекта.

Посредством специального довольно сложного механизма лепестки диафрагмы сводятся к центру и отверстие, которое они образуют, уменьшается. При изменении значения диафрагмы на одну ступень, диаметр уменьшается или увеличивается в 1,4 раза. А вот количество света, попадаемого на пленку или матрицу, увеличивается в другой пропорции - в 2 раза.

Зачем нам необходима диафрагма? Почему без неё не обойтись? Для какой цели этот сложный конструктивный узел включен в фотоаппарат? Главное - для регулирования светового потока на матрицу или плёнку. Например, снимая при ярком освещении целесообразно отверстие диафрагмы сделать поуже. А при недостатке света, естественно, пошире. Но далеко не только для этого нужна диафрагма. Между прочим, по большому счету без нее можно и обойтись. Почему? А вот почему.

Как уже было сказано выше, и диафрагма, и затвор являются своего рода перегородками на пути светового потока, идущего к матрице или плёнке. Диафрагму вместе с выдержкой называют также экспопарой. Например, при одной конкретной съемке диафрагма может быть широко открыта, а выдержка установлена более короткой, а при другой съемке - с точностью до наоборот: выдержка длинная, а отверстие диафрагмы маленькое. Вроде бы, кажется, что значение выдержки и диафрагмы взаимозаменяемы. И та, и другая влияют на количество света, попадаемого на матрицу или плёнку. Но это не совсем так. Точнее, совсем не так. Размер отверстия диафрагмы в первую очередь влияет на глубину резкости, или, как сейчас стали говорить специалисты, глубину резко изображаемого пространства (сокращенно - ГРИП). А это как раз и является весьма значимым функциональным фактором, позволяющим создавать различные творческие и технические эффекты, при помощи которых фотограф и достигает намеченного результата, поставленной цели съемки.

Не хочется вас загружать различными сложными формулами и определениями. Все равно на данном начальном этапе вы мало что запомните и поймёте. Вам сейчас важно понять и усвоить самое главное. В книжках, справочниках и формулах диафрагма обозначается буквой f. И чем большее число будет стоять около этой буквы, тем меньшим будет диаметр отверстия диафрагмы, которое оно обозначает. Например, как на своем языке говорят фотографы, дырка 2.8 шире, чем дырка 8 или 16. Сейчас в основном самое широкое отверстие диафрагмы - это 2,8 (на старинных объективах можно встретить диафрагму 1, 4). Таким образом, на большинстве современных объективов при значении 2,8 отверстие диафрагмы максимально. То есть, смело можно сказать, что диафрагмы в этом случае попросту нет. Между прочим, некоторые мастера считают, что чем меньше значение диафрагмы, то есть чем больше дырка в объективе, тем интереснее будет кадр, тем красивее будет выглядеть объект. Многие свадебные фотографы работают именно по этому принципу - как они говорят, «на полной дырке».

Теперь про глубину резкости. На старых объективах даже была нанесена специальная шкала глубины резкости. Принцип тут простой: чем отверстие диафрагмы меньше, тем глубина резкости больше. Измеряется глубина резкости в метрах. Например, при определенной фокусировке на какой то объект и при определенной диафрагме глубина резко изображаемого пространства будет от 1,5 до 5 метров. Несмотря на то, что основным способом управления глубиной резкости является диафрагма, на ГРИП так же влияют и другие параметры: размер матрицы аппарата, фокусное расстояние объектива, которым вы снимаете, расстояние до снимаемого объекта.

Для разных сюжетов и видов съемки глубина резкости нужна так же разная. Как применять глубину резкости на практике? Например, вы фотографируете пейзаж. Тогда смело закрывайте диафрагму, делайте ее отверстие меньше. И вы получите резкое изображение как ближних, так и дальних объектов снимаемого ландшафта. А если вы решили снять портрет, то фон лучше сделать нерезким, а собственно лицо модели - резким. Как этого добиться? Снимайте с маленькой глубиной резкости, то есть с большим отверстием диафрагмы. В этом случае нерезкость фона как бы оторвет портретируемого от окружающего пространства. С маленькой глубиной резкости хорошо снимать крупным планом цветы, или ещё какие-нибудь объекты небольшого размера. Резкость можно настроить на ближний край цветка. А дальний от фотографа и зрителя край вывести в нерезкость. Это будет очень красиво. За счет маленькой глубины резкости хорошо делать акценты. Зритель сразу понимает, на что автор фотографии хочет обратить его внимание.

Регулировка глубины резко изображаемого пространства - очень важное средство в арсенале фотографа.

В компактных цифровых аппаратах, или каких ещё называют, мыльницах, глубина резкости будет большой при любом положении диафрагмы. Так уж рассчитаны их объективы разработчиками. Это очень мешает реализации многих творческих идей фотографа, но в то же время дает хорошего качества повседневные бытовые снимки для фотолюбителей. Мыльницы ведь и рассчитаны на эту категорию пользователей.

Затвор

Переходим к описанию следующего элемента фотоаппарата - затвору. Для чего они необходим?

Затвор - этот дико сложный механизм, гораздо сложнее, чем механизм диафрагмы. Его можно назвать сердцем любого фотоаппарата. Затвор отмеряет время, на протяжении которого свет действует на матрицу или на фотоплёнку, и происходит собственно процесс экспонирования. Это время, на которое затвор открыт, называется выдержкой. Затвор находится внутри фотокамеры, постороннему взгляду его не видно. Но зато его в зеркальных (как цифровых, так и плёночных) камерах хорошо слышно. Именно он издает тот самый характерный щелчок, ставший символом всей фотографии.

Что же происходит с затвором в момент фотографирования?

Затвор представляет собой механическое устройство, включающее в себя одну или две непрозрачные шторки, которые могут быть расположены как горизонтально, так и вертикально. Именно эти шторки открываются и закрываются, дозируя световой поток. Выдержка измеряется во времени. Чаще всего, это доли секунды. То есть затвор, можно сказать, работает молниеносно. Трудно даже представить себе отрезок времени, составляющий 1/250 или 1/500 долю секунды, не говоря уж о 1/1000 и менее. Но механический затвор имеет предел скорости срабатывания. Тогда каким же образом работают выдержки 15000 и 1/7000 секунды, на которые способна современная фотоаппаратура? Для этих целей инженерами разработан так называемый цифровой затвор. Тут регулировка выдержки осуществляется непосредственно на матрице, электроникой. Происходит это в таком режиме: при нажатии кнопки спуска открываются шторки физического, механического затвора, причем на минимально возможное время, затем на матрицу аппарата от его «электронной начинки» поступает цифровой сигнал, который включает экспонирование матрицы, а спустя какое то время другой сигнал отключает это экспонирование, а затем закрываются шторки и физического затвора. Величина выдержки зависит от освещенности снимаемого объекта, об общей освещенности в помещении, в котором вы снимаете, от скорости движения объекта или объектов съемки. Выдержку всегда нужно соотносить с диафрагмой.

Если в современном зеркальном цифровом фотоаппарате установлено и работает сразу два затвора, может возникнуть вопрос: а зачем в таком случае нужен тут механический затвор? Ответим. Кроме своей основной функции - отмеривания времени - он так же выполняет функцию защиты матрицы от пыли и грязи. Пыль и грязь наносят ей серьезные повреждения. А ведь матрица - самый дорогой и нежный элемент современного фотоаппарата.

Механизм любого фотоаппарата, будь то плёночного или современного зеркального цифрового фотоаппарата, немыслим без затвора. Но из-за наличия в механическом затворе шторок, в цифровых зеркалках исключена возможность визирования по дисплею. Матрица закрыта этими шторками, и изображение на дисплей передаваться просто не имеет возможности. При нажатии кнопки спуска шторки открываются (за счет или пружин, или электромагнитов), и на матрице происходит формирование изображения. В цифровых аппаратах с несъемной оптикой чаще всего стоит электронный затвор. Проще говоря, матрица сама на время проведения экспонирования включается, и по окончании этого времени отключается. Во время экспонирования и происходит запись изображения. Все остальное время на дисплей выводится сигнал для визирования, или, говоря по-другому, наводки. Преимущества электронного затвора очевидно - он может работать на несравненно более высоких скоростях, чем механический. Но, тем не менее, комбинированный электронно-механический затвор намного лучше.

Несколько слов о вспышке

О фотовспышке поговорим только в общих чертах. Причем, упор сделаем на штатную, встроенную в сам фотоаппарат вспышку, которую иногда весело называют «лягушкой» (потому что она, как лягушка, выпрыгивает из фотоаппарата). Вспышка может работать в нескольких режимах, которые соотносятся с режимами работы самого фотоаппарата.

  • Автоматический режим. Вспышка срабатывает (или не срабатывает) автоматически. В этом режиме автоматически же регулируется длительность излучаемого ей светового импульса и его мощность в зависимости от условий освещения, в которых производится съемка. Такой режим удобен тем, что при нём экономится заряд электрической батареи. Но, тем не менее, он не всегда может быть использован. Например, при съемке в контровом свете. Так уж устроен фотоаппарат.
  • Принудительный режим фотовспышки. Вспышка будет срабатывать всегда, независимо от уровня освещенности. В этом режиме недоступно регулирование длительности и мощности светового импульса. Как говорят специалисты, вспышка тут полностью использует своё ведущее число. Такой режим работы со вспышкой применим практически во всех случаях съемки, однако и расход энергии батареи тут будет более высоким, чем в предыдущем режиме.
  • Режим медленной синхронизации. При таком режиме скорость срабатывания затвора (проще говоря, выдержка), устанавливается на более продолжительное время, чем длительность светового импульса. Это делается для дополнительной проработки фона и заднего плана снимаемой сцены. Ведь встроенная в фотоаппарат вспышка достаточно слаба и зачастую ее световой поток не достаёт («не добивает») до фона.
  • Режим съемки без вспышки. Тут вспышка вообще не срабатывает. Этот режим необходим в тех ситуациях, когда съемка со вспышкой запрещена или в ней нет никакой необходимости, так как условия освещенности вполне благоприятные. А при благоприятном естественном освещении изображение всегда получается намного лучше, естественно передаются цвета объектов, теневые и освещенные его участки.

В более совершенных фотоаппаратах предусмотрены и другие режимы работы вспышки, например . В этом режиме перед основной вспышкой, во время которой срабатывает затвор, производится ещё несколько коротких вспышек. Это сделано для того, чтобы у людей, которых вы фотографируете, рефлекторно сузились зрачки глаз. Ведь что такое «красные глаза»? Не что иное, как отражение яркого света вспышки, проникающего через широко открытые зрачки на глазное дно. А если зрачки будут узкими, то и отражение сильного света в глазном дне будет практически незаметным. Такой режим нужно применять лишь при съемке людей. В противном случае - это пустая трата не только энергии батарей, но и времени.

Не нужно забывать, что использование штатной, встроенной в аппарат (как иногда называют - бортовой) фотовспышки делает лица людей на снимке довольно плоскими. Происходит это из-за того, что вспышка находится в непосредственной близости к объективу и «бьёт» прямо в лоб снимаемому человеку, лишая его лицо теней. Стало быть, со встроенной вспышкой людей лучше снимать под небольшим углом - чтобы появились хоть какие-то тени на лице. Но и под большим углом снимать тоже не надо - тени будут слишком грубыми и неестественными.

Устройство зеркальной камеры .

Как могут видеть мир? Что делает снимки резкими в наших камерах? Как вообще работает камера и фиксирует на пленку то что мы хотим сфотографировать? Конечно это вопросы утрированные. Камеры не могут видеть, камеры лишь отображают картинку через механизм фокусировки, которую в свою очередь уже видим мы. Так что давайте разберемся, что есть механизм фокусировки , как работают , каким образом происходит фокусировка на объекте съемки, какие камеры бывают по типу фокусировки и внутреннего устройства, разберемся в устройстве фотоаппаратов , и определим в чем плюсы, и в чем минусы, того или иного варианта устройства фотоаппарата .

Механизм фокусировки, это некое устройство в фотокамере , позволяющее нам правильно определять расстояние до снимаемого нами на камеру объекта. Этот механизм позволяет нам с вами видеть и в последствии фиксировать фотографируемую сцену в резкости на фотоноситель. Я конечно понимаю, что понятие резкость может быть весьма, и весьма, относительным. Тем не менее, при разных установках параметров съемки, именно это устройство в камере дает нам возможность:

    Определить расстояние до объекта

    Оценить масштабность сцены

    Задать правильные параметры съемки, чтоб не пролететь в ГРИП-е (для тех тко не знает что такое ГРИП, ждите следующий выпусков, мы будем рассматривать и это понятие.)

Одним из самых распространенных на сегодняшний день вариантов устройств фотокамер , это механизм зеркальной камеры(или правильней сказать устройство зеркальной камеры) . Да, да, наших с вами зеркалок, которые мы так любим и лелеем.

Итак, что есть зеркальный фотоаппарат? Это в первую очередь, фото камера, в которой объектив видоискателя, и объектив для захвата изображения один и тот же. Ниже я выкладываю рисунок, посредством которого, очень легко понять, по какому принципу устроены все зеркальные . При всем при этом, стоит отметить так же и тот факт, что с момента создания первого устройство фотоаппарата , его принципиальная схема ни как не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата . Все блоки пропускающие свет к фотоносителю остались теми же. Единственным исключением стала замена фотопленки на цифровую фотоматрицу.

Итак по пунктам:

    Свет проходит через объектив устройства фотокамеры.

    После диафрагмы свет достигает зеркала, где по закону отражения уходит дальше.

    От зеркала свет отражаясь попадает через информационный экран (хотя он бывает не во всех зеркалках) в пентапризму.

    В пентапризме, отразившись о ее грани свет находит выход и попадает на линзу видоискателя, где мы собственно его видим нашим глазом.

(а вот вам картинка для прицельно общего представления устройства фотоаппарата зеркального )

Ну а теперь немного отличий пленочного и цифрового устройства зеркальных фотоаппаратов :

    Первое и самое что называется на виду лежащее, это носитель. В цифровой камере, это матрица электронная, а в пленочной — соответственно пленка.

    Второе, на сегодняшний день не настолько явное, но имеющее место быть в большинстве случаев, это площадь фотоносителя. В большинстве любительских и продвинутых, но не профессиональных камер, площадь матрицы существенно меньше, чем площадь пленочного кадра.

    Цифровой фотоаппарат позволяет после сделанного снимка, сразу его поглядеть и оценить, устройство пленочной камеры - зеркальной, этого сделать не позволяет, поскольку пленка это лишь носитель и одна из нескольких ступеней получения изображения кадра.

    Еще одним явным отличием, назову то, что большинство пленочных моделей зеркальных камер, это исключительно механические устройства, а вот камера цифровая работает за счет электропитания.

    Пункт из опыта съемки, на пленочный носитель, кадр лучше переэкспонировать, а вот для цифрового фотоаппарата, лучше будет недоэкспонированный кадр.

Ну что же, по устройству зеркальных камер пожалуй и все. В следующей части статьи мы рассмотрим устройство дальномерных камер.

P.S. Друзья, если статья понравилась вам или стала вам полезной. Сделайте и мне взаимное добро. Поделитесь ссылкой на статью на своих страничках «Вконтакте», «Одноклассниках», «Facebook», «Tweeter» и других страничках. Для этого нужно всего лишь нажать кнопки внизу страницы и следовать простым шагам инструкции. Так же приглашаю вас подписаться на мою рассылку, тогда вы точно не пропустите следующую, надеюсь интересную и полезную, статью. Форма подписки находится в верхнем правом углу страницы.

Цифровой фотоаппарат – оптико-механический прибор, с электронным способом регистрации, обработки и хранения цифровых изображений, с помощью которого производится фотосъемка (рис. 23).

Цифровой фотоаппарат состоит из следующих основных частей:

Корпус со светонепроницаемой камерой;

Объектив;

Диафрагма;

Фотографический затвор;

Кнопка спуска – инициирует съёмку кадра;

Видоискатель;

Фокусировочное устройство;

Фотоэкспонометр;

Встроенная фотовспышка;

Элементы питания камеры;

Матрица;

Дисплей;

Органы управления;

Оптический стабилизатор изображения;

Цифровой блок обработки и хранения данных;

Карта памяти.

Рис. 23. Устройство цифрового фотоаппарата

Конструкция современной цифровой камеры имеет много общего с пленочной камерой, поэтому в дальнейшем Мы будем рассматривать лишь те элементы, которые являются уникальными для цифровой фотокамеры или обладают определенной спецификой использования.

Фотографический затвор. Цифровые фотоаппараты могут обладать как механическим затвором так и электронным.

Электронные фотографические затворы представляют собой не отдельное устройство, а принцип дозирования экспозиции цифровой матрицей. Выдержка определяется временем между обнулением матрицы и моментом считывания с нее информации. Применение электронного затвора позволяет достичь более коротких выдержек без использования дорогостоящих высокоскоростных механических затворов. Есть модели фотоаппаратов, в которых используется комбинация механического и электронного затвора. В таких камерах механический затвор используется при длительных выдержках, а электронный – при коротких.

Видоискатель. В настоящее время многие цифровые камеры имеют оптический или электронный видоискатель (электронная система имитирующая видоискатель зеркальной фотокамеры) для быстрой компоновки кадра и жидкокристаллический дисплей, выполняющий несколько функций, для более точного построения композиции, и просмотра результата съемки. Недостатком жидкокристаллического дисплея является невозможность его использования при высокой освещенности, так как в таких условиях информация на дисплее становиться не различима, и как следствие невозможность осуществить кадрирование. На ЖК дисплей в зависимости от режима работы фотокамеры может выводиться также информация об экспозиционных параметрах и др. С помощью ЖК дисплея мы получаем доступ к меню управления настройками камеры.

Матрица (светочувствительная матрица) – специализированная аналоговая или цифро-аналоговая интегральная микросхема, состоящая из светочувствительных элементов (фотосенсоров), выстроенных в ряды и строки (рис. 24). Матрица предназначена для преобразования, спроецированного на неё оптического изображения в аналоговый электрический сигнал или в поток цифровых данных (при наличии АЦП непосредственно в составе матрицы). При проецировании изображения на матрицу, в каждом ее фотосенсоре накапливается электрический заряд, пропорциональный яркости приходящегося на него элемента изображения. Матрица является основным элементом цифровых фотоаппаратов и видеокамер. Применяется в планшетных и проекционных сканерах.



Рис. 24. Матрица цифрового фотоаппарата

Фотосенсор – это устройство, преобразующее световую энергию (фотоны) в энергию электрического заряда (электроны): чем ярче свет, тем больше заряд (рис. 25).

Рис. 25. Схема фрагмента матрицы цифровой фотокамеры: 1 – инфракрасный фильтр;
2 – микролинза; 3 – красный светофильтр пикселя (фрагмент фильтра Байера);
4 – фотосенсор; 5 –кремниевая подложка

С матрицы в фотоаппарат поступает аналоговая информация, которая образуется в результате измерения электрического заряда на фотосенсорах. Далее с помощью аналого-цифрового преобразователя она преобразуется в цифровую форму – двоичный код. Двоичное число – это последовательность 0 и 1, где каждая цифра называется битом информации. Число бит называют глубиной цвета. В цифровой фотографии, как правило двоичные цифры группируются в цепочки из восьми бит – байты. Байт несет информацию о 256 (десятичная система) возможных значений яркости фотосенсора, что соответствует 256 оттенкам серого.

Фотосенсоры фиксируют яркость элемента изображения, не неся ни какой информации о его цвете. Для получения информации о цвете – матрицу фотосенсоров сверху накрывают матрицей миниатюрных светофильтров, каждый из которых пропускает красный, зеленый или синий свет и задерживает остальные, упорядоченных в виде мозаичного узора Байера (рис. 26). При этом преобладает зеленый цвет, что объясняется физиологией восприятия цвета глазом человека наиболее чувствительному к зеленой части спектра. Благодаря наличию светофильтров каждый пиксель (от англ. pixel – pixture element – элемент, из множества, которых строится цифровое изображение) в конкретном месте сенсора способен регистрировать интенсивность только одного из трех основных цветов (рис. 25). Вследствие этого большее количество света, достигающего фотосенсора, теряется. Захватывается только половина приходящего зеленого света, так как каждый ряд содержит только половину зеленых пикселей, а вторую половину составляют синие или красные. Регистрируется 25% красного и синего света. Поскольку большая часть света не регистрируется, светочувствительность матрицы в целом снижается. Фотосенсоры обладают повышенной чувствительностью к инфракрасному диапазону спектра, поэтому кроме цветных фильтров, устанавливают и инфракрасный.

Рис. 26. Фрагмент типичный сенсор состоит из чувствительного массива и последовательности фильтров, упорядоченных в виде мозаичного узора Байера

Большинство матриц цифровых фотоаппаратов захватывают лишь часть изображения, а полное цветное изображение (восстановление цвета каждого пикселя) получается в результате математической обработки (интерполяции) микропроцессором фотокамеры.

Основные технологии матриц цифровых фотоаппаратов

ПЗС – прибор с зарядовой связью (от англ. CCD – charge-coupled device). Приборы с зарядовой связью первоначально создавались как устройства памяти, в которых можно было поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

ПЗС-матрица – специализированная аналоговая интегральная микросхема, выполненная на основе поликремния, состоящая из светочувствительных элементов (фотодиодов). Фотодиод способен сохранять электрический заряд (эта способность называется емкостью), накапливаемый при ударении фотонов о поверхность сенсора. Перед экспонированием производится сброс всех ранее образовавшихся зарядов и приведение всех элементов устройства в исходное состояние. В процессе экспонирования, в каждом пикселе матрицы, накапливается электрический заряд. Чем интенсивнее световой поток, тем больше накапливается электронов – выше итоговый заряд данного пикселя. После того как отработал фотографический затвор происходит процесс считывания этих зарядов. После аналогово-цифрового преобразования информация обрабатывается микропроцессором камеры.

КМОП – комплементарная структура металл-оксид-полупроводник (от англ. CMOS – Complementary Metal-Oxide Semiconductor). Структуры КМОП обладают чувствительностью к свету. КМОП-матрица – светочувствительная матрица, выполненная на основе КМОП-технологии. В КМОП матрице применяется технология APS (Active Pixel Sensors), которая добавляет к каждому пикселю транзисторный усилитель считывания, позволяя преобразовывать электрический заряд в напряжение и проводить ряд процедур обработки изображения непосредственно в фотосенсоре, реагируя на специфические условия освещенности в момент фотосъемки, что значительно увеличивает быстродействие фотоаппаратов построенных на их основе. Это обеспечило также произвольный доступ к фотодетекторам аналогично реализованному в микросхемах оперативной памяти. С помощью механизма произвольного доступа можно выполнять считывание выбранных групп пикселей – кадрированное считывание. Кадрирование позволяет уменьшить размер захваченного изображения и значительно увеличить скорость считывания по сравнению с ПЗС матрицами. Основные преимущества КМОП технологии – низкое энергопотребление, единство технологии производства с остальными, цифровыми элементами аппаратуры, возможность объединения на одном кристалле аналоговой и цифровой части, что приводит к значительному снижению их себестоимости.

Геометрический размер матрицы и его влияние на изображение.

Геометрический размер матрицы определяет размер изображения – формат кадра. В отличие от фиксированного формата кадра в пленочной фотографии 24×36 мм, размеры матриц современных цифровых фотоаппаратов значительно отличаются друг от друга. Размер матрицы измеряется по диагонали, в долях дюйма (4/3", 2/3", 1/1,8", 1/2,2").

Так как большинство пользователей имеют опыт съемки на пленочные фотоаппараты, оказалось удобным сравнивать объективы пленочных и цифровых камер по углу поля зрения. Для этого было введено понятие эквивалентного фокусного расстояния.

Эквивалентное фокусное расстояние (ЭФР) – фокусное расстояние цифровой камеры, преобразованное в соответствующие значения для 35-миллиметровой пленочной камеры по углу поля зрения. Эквивалентные значения необходимы из-за того, что для цифровых камер размеры датчика и фокусные расстояния объектива не являются стандартизированными, и поэтому преобразование значений важно для сравнения их характеристик. Например, типичный объектив цифровой камеры с фокусным расстоянием 5,8–17,4 мм может дать такое же поле зрения, как и объектив с переменным фокусным расстоянием 38–114 мм для пленочной камеры.

Для сравнения объективов цифровых фотокамер с объективами камер формата 35 мм используется коэффициент преобразования фокусного расстояния – кропфактор.

Кропфактор (K f) отношение диагонали 35 мм кадра (43,2 мм) к диагонали матрицы . Для плёночных фотоаппаратов и полноформатных матриц цифровых фотоаппаратов равен 1. Рассмотрим соотношение между размерами наиболее распространённых типоразмеров матриц цифровых фотоаппаратов со стандартным плёночным кадром (рис. 27).

Рис. 27. Сравнение размеров матриц цифровых фотокамер с кадром 35-мм плёнки.

Геометрический размер матрицы определяет площадь поглощения света и оказывает значительное влияние на многие характеристики изображения шумы, цвета, светочувствительность, ГРИП и т.п.

Отношение сторон кадра

В аналоговой (пленочной) фотографии используется формат кадра 3:2 (36×24 мм).

В цифровой фотографии существуют несколько форматов кадра:

– формат кадра 4:3 (телевизионный формат кадра: PAL, SECAM, NTSC);

– формат кадра 16:9 (телевизионный формат кадра телевидения высокой четкости);

– формат кадра 3:2.

В ряде фотоаппаратов имеется настройка, позволяющая программно изменять формат кадра, что приводит к изменению разрешения снимка (мегапиксели), так как формат кадра определяется геометрическим размером матрицы и соотношением ее сторон.

Формат кадра необходимо учитывать при фотосъемке, в зависимости от предполагаемого дальнейшего использования фотографии.



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...