Как определяется атомный радиус. Атомный радиус: что такое и как определить

Атомным ионам; имеют смысл радиусов сфер, представляющих эти атомы или ионы в молекулах или кристаллах. Атомные радиусы позволяют приближённо оценивать межъядерные (межатомные) расстояния в молекулах и кристаллах.

Электронная плотность изолированного атома быстро убывает по мере увеличения расстояния до ядра, так что радиус атома можно было бы определить как радиус той сферы, в которой сосредоточена основная часть (например, 99%) электронной плотности. Однако для оценки межъядерных расстояний оказалось удобнее интерпретировать атомные радиусы иначе. Это привело к появлению различных определений и систем атомных радиусов.

Ковалентный радиус атома Х определяют как половину длины простой химической связи Х—Х. Так, для галогенов ковалентные радиусы вычисляются из равновесного межъядерного расстояния в молекуле Х 2 , для серы и селена - в молекулах S 8 и Se 8 , для углерода - в кристалле алмаза. Исключение составляет атом водорода, для которого ковалентный атомный радиус принимается равным 30 пм, тогда как половина межъядерного расстояния в молекуле Н 2 равна 37 пм. Для соединений с ковалентным характером связи, как правило, выполняется принцип аддитивности (длина связи Х—Y примерно равна сумме атомных радиусов атомов Х и Y), что позволяет предсказывать длины связей в многоатомных молекулах.

Ионные радиусы определяют как величины, сумма которых для пары ионов (например, Х + и Y -) равна кратчайшему межъядерному расстоянию в соответствующих ионных кристаллах. Существует несколько систем ионных радиусов; системы различаются численными значениями для отдельных ионов в зависимости от того, какой радиус и какого иона принят за основу при вычислении радиусов других ионов. Например, по Полингу - это радиус иона О 2- , принятый равным 140 пм; по Шеннону - радиус того же иона, принятый равным 121 пм. Несмотря на эти различия, разные системы при вычислении межъядерных расстояний в ионных кристаллах приводят к примерно одинаковым результатам.

Металлические радиусы определяют как половину кратчайшего расстояния между атомами в кристаллической решётке металла. Для структур металла, различающихся типом упаковки, эти радиусы различны. Близость значений атомных радиусов различных металлов часто служит указанием на возможность образования этими металлами твёрдых растворов. Аддитивность радиусов позволяет предсказывать параметры кристаллических решёток интерметаллических соединений.

Ван-дер-ваальсовы радиусы определяют как величины, сумма которых равна расстоянию, на которое могут сблизиться два химически не связанных атома разных молекул или разных групп атомов одной и той же молекулы. В среднем ван-дер-ваальсовы радиусы примерно на 80 пм больше, чем ковалентные радиусы. Ван-дер-ваальсовы радиусы используют для интерпретации и предсказания стабильности конформаций молекул и структурного упорядочения молекул в кристаллах.

Лит.: Хаускрофт К., Констебл Э. Современный курс общей химии. М., 2002. Т. 1.

Атомы не имеют четких границ, но вероятность найти электрон , связанный с ядром данного атома , на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый определённый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (порядка 90 процентов).

Характерной оценкой радиуса атома является 1 ангстрем (1 Å), равный 10 -10 м.

Радиус атома и межъядерные расстояния

Во многих случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов. В зависимости от типа связи между атомами различают металлические , ионные , ковалентные и некоторые другие атомные радиусы.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Радиус атома" в других словарях:

    радиус атома

    Раздел физики, изучающий внутреннее устройство атомов. Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся… … Энциклопедия Кольера

    Боровский радиус (Радиус Бора) , радиус ближайшей к ядру орбиты электрона атома водорода в модели атома, предложенной Нильсом Бором в 1913 г. и явившейся предвестницей квантовой механики. В модели электроны движутся по круговым орбитам… … Википедия

    Ван дер ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван дер ваальсовыми радиусами считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой химической… … Википедия

    атомный радиус - atomo spindulys statusas T sritis fizika atitikmenys: angl. atomic radius vok. Atomradius, m rus. атомный радиус, m; радиус атома, m pranc. rayon atomique, m; rayon de l’atome, m … Fizikos terminų žodynas

    Радиус а 0 первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора (1913); а 0= 5,2917706(44)*10 11 м. В квантовомех. теории атома Б. р. соответствует расстояние от ядра, на к ром с Наиб. вероятностью можно… … Химическая энциклопедия

    Радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора; обозначается символом a0 или a. Б. р. равен (5,29167±0,00007)×10 9см = 0,529 Å; выражается через универсальные постоянные: а0 = ћ2/me2, где … Большая советская энциклопедия

    Радиус ао первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории строения атома Н. Бора (1913); а0 = 0,529 х 10 10 м = 0,529 А … Естествознание. Энциклопедический словарь

    Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

Книги

  • Квантовая механика в общей теории относительности , А. К. Горбацевич. В монографии показано, что общековариантное уравнение Дирака можно рассматривать как специальное координатное представление (с неортонормированными базисными векторами в гильбертовом…

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям , определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

  • ковалентная;
  • ионная;
  • металлическая;
  • ван-дер-ваальсова.

Соответственно этим связям таким же будет и атомный радиус .

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х-Х, причем Х - это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х-Х в молекуле Х2, для молекул селена Se и серы S - половине расстояния Х-Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С-С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности , т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов , при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

  • Гольдшмидта;
  • Полинга;
  • Белова и Бокия;
  • других ученых.

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример - молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип «плотной упаковки», когда молекулы, образующие кристалл , входят друг в друга своими «выступами» и «впадинами». На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

Не получили ответ на свой вопрос? Предложите авторам тему.

АТОМНЫЙ РАДИУС - характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия "А. р." подразумевают, что 90-98% электронной атома заключено в сфере этого радиуса. А. р. имеют порядок 0,1 HM, однако даже небольшие различия в их значениях могут определять структуру построенных из них кристаллов, сказываются на равновесной геометрии молекул и т. д. Для мн. задач кратчайшие расстояния между атомами в молекулах и конденсированных средах можно считать суммой их А. р., однако такая аддитивность весьма приближённа и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами (см. Межатомное взаимодействие) , различают металлические, ионные, ковалентные и ван-дер-ваальсовы А. р.

Металлич. радиусы считаются равными половине кратчайшего расстояния между атомами в кристаллич. структуре элемента-металла, они зависят от координац. числа К . Если принять А. р. при К=12 за единицу, то при К=8 , 6 и 4 А. р. того же элемента соотв. равны 0,98; 0,96; 0,88. Близость значений А. р. разных металлов - необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образуют непрерывный ряд твёрдых растворов (А. р. Li, К, Pb и Cs равны соотв. 0,155; 0,236; 0,248; 0,268 HM). Аддитивность А. р. позволяет приближённо предсказывать параметры кристаллич. решёток интерметаллич. соединений.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. О точности, с к-рой выполняется указанная аддитивность А. р., можно судить на основании кратчайших межъядерных расстояний в кристаллах галогенидов щелочных металлов, приведённых ниже:

Разность А. р. ионов , полученная сравнением межъядерных расстояний в KF и NaF, составляет 0,035 нм (А. р. иона в кристаллах KF в NaF предполагаются одинаковыми), а для соединений KCl и NaCl она равна 0,033 HM, из соединений KBr и NaBr - 0,031 HM и из соединений KI и NaI - 0,030 HM. T. о., типичная погрешность определения межъядерных расстояний в ионных кристаллах по А. р.~ 0,001 нм.

Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. В. M. Гольдшмидтом (V. M. Goldschmidt), опиравшимся, с одной стороны, на межъядерные расстояния в кристаллах, измеренные методами рентгеновского структурного анализа, а с другой - на значения А. р. и , определённые методом рефрактометрии (соотв. 0,133 и 0,132 HM). Большинство др. систем также опирается на определённые . методами межъядерные расстояния в кристаллах и на нек-рое "реперное" значение А. р. определ. иона. В наиб. широко известной системе По-линга этим реперным значением является А. р. (0,140 HM). В системе Белова и Бокия, считающейся одной из наиб. надёжных, А. р. 0 2- принимается равным 0,136 HM. Ниже приведены значения радиусов нек-рых ионов:

в системе Гольдшмидта

в системе Полинга

в системе Гольдшмидта

в системе Полинга

Для ионных кристаллов, имеющих одинаковые координац. числа, ср. отклонение суммы А. р., вычисленной по приведённым выше А. р., от опытных значений кратчайших межъядерных расстояний в ионных кристаллах составляет 0,001-0,002 HM.

В 70-80-х гг. были сделаны попытки прямого определения А. р. ионов путём измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Дифракц. измерения для кристаллов галогенидов щелочных металлов позволили получить А. р. катионов Li + , Na + , К + , Rb + и Cs + , равные соотв. 0,094; 0,117; 0,149; 0,163; 0,186 нм, а А. р. анионов F - , Cl - , Br - , I - - равные соотв. 0,116; 0,164; 0,180; 0,205 HM. T. о. дифракц. измерения приводят к завышенным (по сравнению с традиционными, приведёнными выше) значениям А. р. катионов и к заниженным значениям А. р. анионов. А. р., найденные путём измерения распределения электронной плотности в кристалле, нельзя переносить от одного соединения к другому, а отклонения от их аддитивности слишком велики, поэтому такие А. р. не могут быть использованы для предсказания межъядерных расстояний.

Ковалентный радиус определяется как половина длины одинарной хим. связи X - X (где X - элемент-неметалл). Для галогенов ковалентный А. р.- это половина межъядерного расстояния X - X в молекуле X 2 , для S и Se - половина расстояния X - X в X 8 , для углерода - половина кратчайшего расстояния С - С в кристалле алмаза. Ковалентные А. р. F, Cl, Br, I, S, Se и С соотв. равны 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Для атома H А. р. принимают равным 0,030 HM (хотя половина длины связи H - H в молекуле H 2 равна 0,037 HM). Аддитивность ковалентных А. р. позволяет предсказывать кратчайшие межъядерные расстояния (длины связей) в многоатомных молекулах. Так, согласно этому правилу длина связи C-Cl должна быть равной 0,176 HM, а экспериментально полученное для этой величины значение в молекуле CCl 4 равно 0,177 HM. Ниже приведены ковалентные А. р. для атомов нек-рых элементов, вычисленные на основании длин одинарных связей:

В молекулах, имеющих двойные или тройные хим. связи, используют уменьшенные значения ковалентных А. р., ибо кратные связи короче одинарных. Ниже приведены ковалентные радиусы атомов при образовании кратных связей:

Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой хим. связью и принадлежащими разным молекулам (напр., в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому ван-дер-ваальсовы А. р. характеризуют минимальные допустимые контакты атомов, принадлежащих разным молекулам. Ниже приведены значения ван-дер-ваальсовых атомных радиусов для нек-рых атомов:

Ван-дер-ваальсовы А. р. в ср. на 0,08 нм больше ковалентных А. р. Ионный А. р. для отрицательно заряженного иона (напр., Cl -) практически совпадает с ван-дер-ваальсовым радиусом атома в нейтральном состоянии.

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются таким образом, что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Лит.: Бокий Г. Б., Кристаллохимия, 3 изд., M., 1971; Полинг Л., Общая химия, пер. с англ., M., 1974; Кемпбел Д ж., Современная общая химия, пер. с англ., т. 1, M., 1975; Картмелл Э., Фоулз Г. В. А., Валентность и строение молекул, пер. с англ., M., 1979. В. Г. Дашевский .



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...