Классификация минеральных веществ. Классификация минеральных вяжущих веществ

Существующие системы классификации минеральных элементов, обнаруженных в организме животных, основываются на одной из трех исходных предпосылок: 1) преимущественной локализации элементов в тех или иных органах и тканях, 2) количественном содержании элементов в организме и 3) их значении для жизнедеятельности.
В основу классификации по распределению элементов в органах и тканях положена «тропность», т. е. органная и тканевая специфичность элементов, или, наоборот, отсутствие таковой.
Согласно этой схеме, минеральные элементы разделяют на три группы: 1) локализующиеся в костной ткани (остеотропные); 2) локализующиеся в ретикулоэндотелиальной системе; 3) не обладающие тканевой специфичностью, т. е. равномерно распределяющиеся по тканям организма.
К первой группе элементов относят кальций, магний, стронций, бериллий, фтор, ванадий, барий, титан, радий, свинец и др.; ко второй - железо, медь, марганец, серебро, хром, никель, кобальт, часть лантанидов; к третьей - натрий, калий, серу, хлор, литий, рубидий, цезий.
С физиологической точки зрения эта схема несовершенна. Прежде всего большинство «тройных» элементов не является таковыми в полном смысле слова. Магний, например, концентрируется в костях, но он же представляет собой основной внутриклеточный катион мягких тканей. Фосфор - остеотропный элемент (до 83% его находится в скелете в составе гидроксиапатита), но он входит в состав сложных органических соединений и является непременным компонентом внутренней среды организма.
Кроме того, накопление каких-либо элементов в кости, печени, селезенке и т. д. еще не определяет их значения в развитии и функционировании данного органа. Так, некоторые остеотропные элементы (свинец, бериллий, барий, цирконий, олово, актиниды), по-видимому, не выполняют никакой биологической функции и являются для скелета балластными. Концентрация ряда элементов (например, меди, кобальта) в печени находится в прямой зависимости от поступления их с кормом; для других же элементов (марганец, железо) эта зависимость выражена слабо, хотя содержание их в печени достаточно высокое.
Что касается ретикулоэндотелиальной системы (системы макрофагов), то под этим названием понимают совокупность различных по структуре образований, выполняющих функцию защиты организма от чужеродных частиц или веществ. Сюда относят ретикулярные клетки и эндотелий сосудов в костном мозге, селезенке, лимфатических узлах, легких; особые эндотелиальные (купферовские) клетки в капиллярах печени, сходные с ними клетки в мозговом веществе надпочечников и аденогипофизе. Накопление минеральных элементов в этих органах служит не столько доказательством их важности для функции данного органа, сколько показателем их токсичности или бесполезности для организма.
Наконец, имеются элементы, вообще не попадающие ни в одну из перечисленных групп. Это йод, концентрирующийся в щитовидной железе и яичниках, теллур - в почках, мышьяк и сурьма - в эритроцитах, цинк и кадмий - в поджелудочной железе, половых органах, костях.
В целом описанная классификация более полезна для токсикологов и радиобиологов, чем для физиологов.
По классификации, основанной на количественном признаке, все минеральные элементы делят на три группы в соответствии с их содержанием в теле животных: макроэлементы, микроэлементы и ультрамикроэлементы (табл. 1).


Система классификации по количественному признаку проста и удобна, но она не дает ответа на главный вопрос - какова биологическая роль того или иного элемента в организме. Кроме того, количественное содержание некоторых элементов в организме может значительно варьировать в зависимости от среды обитания животных, способа питания, видовой принадлежности (это, в частности, относится к фтору, ванадию, селену, стронцию, молибдену, кадмию).
По мнению ряда исследователей, микро- и ультрамикроэлементы вообще не следует отождествлять с минеральными веществами по той причине, что в кормах и животных организмах они содержатся главным образом в виде органических соединений или комплексов, обладающих биологической активностью. Однако это обстоятельство, по-видимому, не является основанием для обособления микроэлементов в особую группу биологически активных веществ.
При современном уровне знаний метаболизм любого минерального элемента нельзя рассматривать лишь в аспекте динамики его неорганических солей.
С точки же зрения науки о кормлении животных микроэлементы являются столь же необходимыми компонентами питания, как и другие минеральные элементы, независимо от того, в какой форме они поступают в организм.
Классификация, основанная на биологической роли элементов, представляет наибольший интерес для физиологов, биохимиков и специалистов в области питания животных. Согласно этой классификации, минеральные элементы, обнаруженные в организме животных, делят на три группы: 1) жизненно необходимые (биогенные, биотические элементы), 2) вероятно (условно) необходимые и 3) элементы с малоизученной или неизвестной ролью.
Для большинства млекопитающих животных, в том числе и сельскохозяйственных, эту классификацию можно представить следующим образом:

Группа биотических элементов включает в себя все макроэлементы, часть микро- и ультрамикроэлементов. Это подтверждает мысль о том, что порядок концентрации того или иного микроэлемента в организме еще не определяет его биологического значения.
Элемент может быть отнесен к группе биотических, если он удовлетворяет следующим требованиям:
- постоянно присутствует в организме животных в количествах, сходных у разных индивидуумов;
- ткани по содержанию данного элемента всегда располагаются в определенном порядке;
- синтетический рацион, не содержащий этого элемента, вызывает у животных характерные симптомы недостаточности и определенные биохимические изменения в тканях;
- эти симптомы и изменения могут быть предотвращены или устранены путем добавления данного элемента в экспериментальный рацион.
Всем перечисленным требованиям в свете современных данных удовлетворяют 15 элементов, перечисленных выше. Даже такой элемент, как фтор, обладающий очевидным профилактическим эффектом против кариеса зубов и, по-видимому, способствующий костеобразованию, не включен в эту группу. Дело в том, что до настоящего времени не удалось воспроизвести симптомы недостаточности фтора в эксперименте при содержании животных на рационе, дефицитном по этому элементу. Необходимо отметить, что воспроизведение пищевой недостаточности иногда затруднительно вследствие чрезвычайно малой потребности животного в изучаемых элементах и наличия их следов в компонентах очищенного рациона (соевом белке, глюкозе, сахарозе, желатине, казеине и пр.).
Среди 15 жизненно необходимых элементов 9 являются катионами - это кальций (Ca2+), натрий (Na+), калий (K+), магний (Mg2+), марганец (Mn2+), цинк (Zn2+), железо (Fe2+), медь (Cu2+) и кобальт (Co2+), а 6 других - анионами или содержатся в сложных анионных группировках - хлорид (Cl-), йодид (J-), фосфат (РО4в3-), сульфат (SO4в2-), молибдат (МоО4в2-) и селенит (SeO3в2-).
Вероятно необходимые элементы также постоянно обнаруживаются в тканях животных в относительно стабильных количествах, но не удовлетворяют всем перечисленным выше требованиям. Участие этих элементов в обменных процессах может ограничиваться отдельными тканями и в ряде случаев требует экспериментального подтверждения.
Что касается элементов, роль которых в организме мало изучена или неизвестна, то многие из них, по-видимому, случайно накапливаются в организме, поступая с кормами и не выполняя какой-либо полезной функции. Однако строго ограничивать группу биогенных элементов тоже нельзя, поскольку возможно открытие биологической роли новых элементов. Например, в последние годы установлена биотическая роль селена, появились экспериментальные данные об участии в метаболических процессах фтора, хрома, кремния, мышьяка.
На рисунке 2.1 приведена схема классификации элементов тела животных, в которой одновременно учтены их количественные характеристики и значение для процессов жизнедеятельности.
Классификация элементов по степени их биогенности, как и две предыдущие, имеет существенные недостатки: она слишком обща, не отражает механизма влияния минеральных элементов на организм и не позволяет достаточно точно предвидеть возможную биологическую роль или токсикологический эффект того или иного элемента. В настоящее время исследователи вынуждены, как правило, давать индивидуальную оценку каждому элементу.

В.В.Иванов и Г.А.Невраев в целях более комплексной оценки различных минеральных лечебных вод разработали классификацию, основанную на основных критериях их оценки и данных о закономерностях формирования минеральных вод. Исходя из реально существующих в природе типов вод, они предложили такую классификационную таблицу, в которой каждой воде отведено строго определенное место.

Группы минеральных вод

Такая классификационная таблица имеет важное практическое значение: пользуясь методом аналогии и сопоставления, можно судить о лечебных качествах вновь полученной воды. Согласно классификации Иванова и Невраева, все природные (подземные) воды разделяются по составу, свойствам и лечебному значению на шесть основных бальнеологических групп.

Группа А. Воды без «специфических» компонентов и свойств. Их лечебное значение определяется только ионным составом и величиной минерализации при наличии в их газовой составляющей в основном азота и метана, которые содержаться в водах в растворенном состоянии при атмосферном давлении лишь в незначительных количествах.

Группа Б. Воды углекислые. Их лечебное значение определяется, прежде всего, наличием больших количеств растворенного углекислого газа, который в общем газовом составе этих вод занимает доминирующее положение (80-100%), а также ионным составом и величиной минерализации.

Группа В. Воды сероводородные (сульфидные). Эти воды выделены по наличию в их составе свободного сероводорода и гидросульфидного иона, которые и определяют лечебное действие минеральных вод, используемых преимущественно для ванн. Содержание общего сероводорода этих вод не должно быть ниже 10 мг/л.

Группа Г. Воды железистые (Fe + Fe), мышьяковистые (As) и с высоким содержанием Mn, Cu, Al и др. Их лечебное действие определяется, помимо ионного и газового состава и минерализации, присутствием одного или нескольких из перечисленных фармакологически активных компонентов.

Группа Д. Воды бромистые (Br), йодистые (I) и высоким содержанием органических веществ. Для отнесения вод к бромистым и йодистым (или йодо-бромистым) принято содержание брома 25 мг/л и йода 5 мг/л при минерализации не более 12-13 г/л. При более высокой минерализации нормы соответственно увеличиваются.

Достаточно обоснованных норм для оценки высокого содержания органического вещества в лечебных минеральных водах пока не разработано. Известны два типа минеральных вод с высоким содержанием органического вещества – Нафтуся (Западная Украина) и Брамштедтские (ФРГ).

Группа Е. Воды радоновые (радиоактивные). К этой группе относятся все минеральные воды, содержащие более 50 эман/л (14 ед. Махе) радона.

Группа Ж. Кремнистые термы. В эту группу вод включены широко распространенные в природе кремнистые термальные воды. В качестве условной нормы содержание в них принято 50 мг/л, при температуре более 35ºC.

Далее, группы вод по газовому составу делятся на три подгруппы: а) азотные, в которых газ имеет в основном атмосферное происхождение; б) метановые (включая азотно-метановые и углекисло-метановые), в которых газ в основном биохимического происхождения; в) углекислые, в которых газ, как правило, эндогенного происхождения. К последней группе отнесены и вулканические газы, где почти всегда резко преобладает углекислый газ.

В минеральных водах группы А могут присутствовать азотные и метановые газы; в группах В и Ж – азотные, метановые и углекислые; в группах Г и Е – азотные и углекислые; в группе Д – азотные и метановые; все воды группы Б только углекислые.

Одновременно все минеральные воды разделены по составу и минерализации на 9 классов. При этом учитывались все ионы, содержащиеся в количествах не менее 20% экв. Первый класс объединяет в себе все воды с общей минерализацией до 2 г/л, независимо от их состава, так как при такой невысокой минерализации лечебное действие минеральной воды определяется не ионным составом, а наличием каких-либо фармакологически активных микрокомпонентов или специфических свойств. Во всех остальных классах число подклассов колеблется от 3 до 7.

Выделено несколько градаций минерализации: до 2, 2-5, 5-15, 15-35, 35-150 и выше 150 г/л. Такое подразделение, удобное в бальнеологическом и генетическом отношении показывает обычную наиболее часто встречающуюся в природе минерализацию типов минеральных вод.

Температурное деление минеральных вод

По температуре минеральные воды разделены на три группы:

1) всегда холодные, формирующиеся, как правило, на небольших глубинах;

2) холодные, теплые или горячие в зависимости от глубины циркуляции;

3) всегда горячие, генезис и особенности состава которых тесно связаны с их территориальностью. К последним относятся все термы, входящие в группы В и Г.

По величине pH воды разделены на 6 групп. Величина pH имеет особо важное значение для лечебной оценки сероводородных (сульфидных) вод, поскольку ею определяется соотношение в водах свободного и, а также кремнекислых терм, количество и форма нахождения в которых зависит от щелочности или кислотности вод.

Такое деление минеральных вод по величине pH – по кислотно-основным свойствам – уточнено и более хорошо обосновано в физико-химическом отношении А.Н.Павловым и В.Н.Шемякиным.

Эти классификации лечебных, промышленных и теплоэнергетических вод имеют частный характер и специальное назначение. Известны многочисленные попытки составить общие, естественноисторические, генетические и другие классификации природных вод по составу и минерализации.

Классификация минеральных вод Иванова и Невраева по минерализации предназначены для лечебных вод и не пригодны для промышленных и теплоэнергетических.

В зависимости от условий твердения минеральные вяжущие вещества подразделяются на три группы:

1. Воздушные

2. Гидравлические

3. Вяжущие автоклавного твердения.

Воздушные вяжущие.

Они твердеют и набирают прочность только на воздухе. Эти вяжущие обладают низкой водостойкостью и могут эксплуатироваться только в сухих условиях.

По химическому составу разделяются на 4 подгруппы:

1. Известковые вяжущие, в основном состоящие из оксида кальция (CaO).

2. Гипсовые вяжущие, в основном состоящие из сульфата кальция (CaSO 4)

3. Магнезиальные,

4. Вяжущие на основе жидкого стекла, представляющие собой силикаты натрия или калия (NaO cdot m SiO_2 или K_2 O cdot m SiO_2)

Гидравлические вяжущие.

Они представляют собой вещества, способные твердеть и набирать прочность не только на воздухе, но и в воде. Они обладают высокой прочностью и водостойкостью и могут эксплуатироваться в любых условиях.

По химическому составу представляют собой сложные соединения. В основном содержат 4 оксида - CaO-SiO 2 -Al 2 O 3 -Fe 2 O 3 .

В зависимости от состава (каких оксидов больше), гидравлические вяжущие подразделяются на 2 подгруппы:

1. Силикатные цементы, в основном состоящие из силикатов кальция.

◦ Портланд-цемент и его разновидности.

2. Аллюминатные цементы, в основном состоящие из аллюминатов кальция.

◦ Глиноземистый цемент и его разновидности

Вяжущие автоклавного твердения.

Они представляют собой вещества, способные образовывать прочный камень в атмосфере автоклавного синтеза при температуре 175-200 градусов и давлении от 0,8 до 1,3 мегапаскалей. К ним относятся известково-кремнеземистые вяжущие, состоящие из извести и кремнеземистого компонента (песка, шлака или золы).

Воздушные вяжущие.

1.Гипсовые вяжущие вещества.

Гипсовыми называют получаемые из минерального сырья, путем его обжига и помола и содержащие в основном сульфат кальция.

Сырьем для производства гипсовых вяжущих являются горные породы (гипсовый камень CaSO 4 *2H 2 0) и ангидрит (CaSO 4), а также отходы промышленности (фосфогипс). В зависимости от температуры тепловой обработки, гипсовые вяжущие подразделяются на низкообжиговые и высокообжиговые.

1.1. Низкообжиговые гипсовые вяжущие.

Их получают термической обработкой гипсового камня при температуре от 110 до 180 градусов. При этом образуется так называемый полуводный гипс (CaSO 4 *0,5H 2 0). Они обладают невысокой прочностью и водостойкостью. К достоинствам можно отнести хорошие тепло- и звукоизоляционные свойства, экологическую чистоту и способность регулировать влажность в помещении.

1.1.1.К ним относятся следующие разновидности:

1.1.1.1 Строительный гипс

Его получают тепловой обработкой гипсового камня в открытых варочных котлах или печах. При этом образуется %beta - модификация полуводного гипса с мелкими и плохо сформированными кристаллами, поэтому прочность строительного гипса невысока. Она выражается маркой строительного гипса Г, которая представляет собой предел прочности при сжатии (R сж) половинок гипсовых балочек, размером 4х4х16 сантиметров. Строительный гипс выпускают трех марок: Г3, Г4 и Г5. Это означает, что прочность при сжатии = 3-5 МПа.

Время перехода гипсового теста в камнеподобное состояние называется сроками схватывания. Различают начало и конец схватывания. Начало схватывания - это время, за которое система, вяжущее-вод только начинает терять свою подвижность. Для строительного гипса не ранее 4 минут. Конец схватывания - это время, за которое системой вяжущее-вода подвижность теряется полностью, т.е. система превращается в камень. Для строительного гипса от 6 до 30 минут.

1.1.1.2. Высокопрочный гипс.

Его получают термической обработкой гипсового камня в автоклавах при повышенном давлении. Полуводный гипс образует крупные и правильно сформированные кристаллы - альфа-модификация полуводного гипса. Это приводит к тому, что прочность высокопрочного гипса гораздо выше, чем строительного.

1.1.1.3. Формовочный гипс.

По составу такой же, как и строительный гипс (бета-модификация), но содержит меньше примесей и более тонко размолот. Используется в керамической промышленности для изготовления форм.

1.1.2. Твердение низкообжиговых гипсовых вяжущих.

Происходит при их взаимодействии с водой. Половинка поды становится двойной нормальной водой. Твердение можно регулировать - замедлять и ускорять. Ускоряют твердение введением электролитов (CaCl, NaCl), или вводят частицы молотого гипсового камня, которые служат дополнительными центрами кристаллизации. Замедляют твердение гипса введением пленкообразующих веществ, затрудняющих доступ воды, например водный раствор столярного клея.

1.1.3. Применение.

Низкообжиговые гипсовые вяжущие используют для штукатурных строительных растворов, изготовления гипсовой плитки и лепнины. Кроме того, из них изготавливают композиционные материалы - гипсоволокнистые листы (ГВЛ) из гипса и распушенной на волокна бумаги и гипсокартон из гипса и плотного картона. Кроме того, изготовляют сухие смеси для отделки стен и потолков, а также клея и затирки гипса.

1.2. Высообжиговые гипсовые вяжущие

Их изготавливают обжигом гипсового камня при температуре 600-1000 градусов. Они обладают более высокой прочностью и водостойкостью в сравнении с низкообжиговыми, но очень медленно твердеют.

К высокообжиговым гипсам относятся:

а) ангидритовый цемент, его получают либо высокотемпературным обжигом гипсового камня, либо помолом горных пород ангидрита.

Это вяжущее крайне медленно твердеет и для ускорения процесса вводят от 3 до 5% извести CaO. Сроки схватывания: начало не ранее 30 минут, конец не позднее 24 часов. Rсж от 5 до 20 Мпа.

б) эстрих-гипс. Его получают обжигом гипсового камня при температуре 800-1000 градусов.

9Катализатор твердения CaO образуется в процессе обжига, т.е. Исключается технологическая операция его введения. В остальном эстрих-гипс имеет те же свойства и марки, что и ангидритовый цемент.

Применение: для штукатурных растворов, изготовления отделочного материала искусственного мрамора, а также для устройства бесшумных наливных полов.

{известковые, магнезиальные и вяжущие на основе жидкого стекла самостоятельно}

Бальнеотерапия (лат. balneum — ванна) — лечебное применение минеральных вод. Основу бальнеотерапии составляет наружное применение природных и искусственно приготовленных минеральных вод. Вместе с тем бальнеотерапия традиционно включает и внутреннее применение минеральных вод (питье, ингаляции, промывания кишечника и проч.).

Характеристика и классификация минеральных вод

Минеральные воды — природные воды, оказывающие на организм человека лечебное действие, обусловленное основным ионно-солевым и газовым составом, повышенным содержанием биологически активных компонентов и специфическими свойствами (радиоактивность, температура, реакция среды по ГОСТ 13273-88).

Минеральные воды образуются в результате тесно взаимосвязанных геохимических процессов выщелачивания, растворения солей и ионного обмена в системе вода-порода. По происхождению и условиям формирования выделяют минеральные воды:

  • седиментогенные (ювенильные, глубинные), в формировании которых участвуют процессы фильтрации просачивающихся в Землю поверхностных вод осадочными породами;
  • инфильтративные (вадозные, поверхностные), которые формируются в результате осадконакопления и захоронения морских вод в глубоких недрах.

На поверхность Земли минеральные воды выходят в виде естественных минеральных источников или выводятся из недр при помощи буровых (каптажных) скважин глубиной 2-3 км и более.

В состав всех минеральных вод входят четыре взаимосвязанных компонента — неорганические минеральные вещества, газы, органические вещества и микрофлора. Они растворены в воде, молекулы которой, по современным представлениям, соединены между собой слабыми водородными связями (с энергией 20 кДж/моль) и образуют различные полиассоциаты. Такие супермолекулы состоят из 57 молекул воды, имеющих тетраэдрическую координацию (рис. 1.1), и составляют 15 % всего объема воды. По 16 таких супермолекул сцеплены в особые «структурные элементы» воды — микрокластеры, состоящие из 912 молекул воды. Доля таких пространственно структурированных элементов в общем объеме воды составляет 80 %, а их линейные размеры достигают 10 -8 м. Целостность такой структуры обусловлена межкластерными атомоподобными взаимодействиями. Гексагональные кластеры молекул волы почти не взаимодействуют друг с другом, а легко скользят гранями друг относительно друга, что обусловливает ее высокую текучесть. Они практически не разрушаются даже при кипении воды. При наличии химических веществ (ионов, газов и др.) структурные элементы воды образуют самоорганизующиеся диссоциативные суперструктуры, строение и физико-химические свойства которых обусловлены химической природой примесей. Исходя из этого, говорят об уникальной «информационной» структуре минеральной воды, в которой «записана» информация о растворенных в ней веществах. Об этом интуитивно догадывались уже древние мыслители: Аристотель утверждал, что «воды таковы, как земли, которые они проходят».

Рис. 1.1. Структура полиассоциатовминеральной воды

В состав минеральных вод входят практически все содержащиеся в недрах Земли химические элементы , которые существуют там в форме гидратированных ионов либо ассоциированных соединений, причем пределы их концентраций различаются на 5-6 порядков. Наиболее распространены катионы Na + , Mg 2+ , Са 2+ и анионы CI - , SO 2 4 - , HCO 3 - . С увеличением суммарного содержания ионов в воде возрастает число соединений хелатноготипа, образуемых ими с комплексонами, которые попадают в грунтовые воды в результате разложения веществ органической природы. Для ионов Na + и СI - содержание таких комплексонов увеличивается до 50%, а для ионов Mg 2+ Са 2+ и SO 2 4 - — до 95 %.

Основными параметрами минеральных вод являются ее ионный и газовый составы.

Ионы многих микроэлементов Мn, Сu, Zn, Mo, Fe, As, Co, В, F, Br, J, содержащиеся в минеральных водах в ничтожных количествах, являются кофакторами большинства энзимов и способны активно вмешиваться в различные виды обмена в организме. При использовании минеральных вод для наружного применения особенности их микрокомпонентного состава не имеют существенного значения и не учитываются, но они играют кардинальную роль при питьевом использовании минеральных вод. Кроме того, минеральные воды содержат значительное количество кремнезема в виде кремниевой кислоты H 2 SiO 3 (в виде коллоидной недиссоциированной фракции) или гидросиликат-иона HSIO 3 - .

Газы , содержащиеся в минеральных водах в растворенном состоянии, состав которых является важнейшим показателем происхождения минеральных вод и влияет на их ионный состав. По справедливому замечанию академика В.И. Вернадского, минеральная вода «насыщена газами той земной оболочки, в которой она находится и где она формировалась». Основными компонентами газового состава минеральных вод являются азот N 2 , метан СН 4 , диоксид углерода СO 2 и сероводород H 2 S. Азот и метан в силу малой растворимости при больших концентрациях спонтанно выделяются из воды. В состав минеральных вод входит радиоактивный газ радон, выделяющийся из радия в водовмещающих горных породах. Из-за небольшого количества и хорошей растворимости радон содержится в водах только в растворенном состоянии.

Среди органических веществ, содержащихся в минеральных водах, преобладают летучие жирные кислоты (уксусная, муравьиная, масляная, пропионовая и др.), эфиры, спирты, амины, углеводы и гуминовые кислоты. Наибольшее количество органических соединений находится в подземных водах газовых и нефтяных месторождений, а также областях высокого торфообразования.

Микрофлора минеральных вод представлена преимущественно аммонифицирующими, метаноокисляющими, сульфатвосстанавливающими и водородпродуцирующими бактериями. Потребляя вещества горных пород, они образуют 66льшую часть содержащихся в воде сложных ионов и газов. Число микроорганизмов в минеральных водах может достигать 10 6 в 1 мл.

Происхождение минеральных вод определяет не только их состав, но и уникальные физико-химические свойства — химические, термофизические, радиационные и механические.

По химическому составу, физическим свойствам и лечебному значению природные минеральные воды разделяют на 9 основных бальнеотерапевтических групп:

  • I — воды без «специфических» компонентов и свойств (действие которых определяется ионным составом и минерализацией);
  • II — воды углекислые;
  • III — воды сероводородные;
  • IV — воды железистые и «полиметальные» (с повышенным содержанием марганца, меди, свинца, цинка, алюминия и т.д.);
  • V -воды бромные, йодные и йодобромные;
  • VI — воды кремнистые гипертермальные (термы);
  • VII — воды мышьяковистые;
  • VIII- воды радоновые (радиоактивные);
  • IX — воды борсодержащие.

Внутри перечисленных групп выделяют различные гидрохимические типы минеральных вод.

Наряду с качественным составом минеральных вод не меньшее значение имеют интегральные количественные показатели, среди которых наиболее информативны:

  • минерализация — количество всех растворенных в единице объема воды веществ (ионов и недиссоциированных молекул), исключая газы;
  • газосодержание — количество всех газов, растворенных в минеральной воде;
  • суммарное содержание органического углерода, которое применяют для оценки содержания органических веществ в минеральных водах.

Кроме того, минеральные воды разделяют по кислотности (щелочности), имеющей важное значение при внутреннем приеме воды. С кислотностью тесно связан окислительно-восстановительный потенциал Eh минеральных вод (мера их окислительной активности). Величина Eh изменяется в различных водах от -600 до 860 мВ и уменьшается с ростом рН.

Температура является основным параметром термофизических свойств минеральной воды. Она обусловливает растворимость и содержание в воде газов и модулирует лечебное действие растворенных в воде химических веществ. Температура минеральных вод колеблется от 0 °С и ниже до 200-300 °С и зависит от теплового режима их недр и глубины циркуляции.

Радиационное действие минеральных вод определяется преимущественно излучением содержащегося в них радона. Количественно оно характеризуется радиоактивностью радона, измеряемой в Бк/дм 3 .

Механические свойства минеральных вод близки к таковым для пресной воды.

Необходимо отметить, что не все содержащиеся в земных недрах многочисленные минеральные воды могут быть использованы в лечебных целях. К лечебным минеральным водам могут быть отнесены только те, состав и свойства которых соответствуют принятым нормам для отнесения воды к лечебной минеральной. Эти нормы разработаны на основе многолетнего опыта клинического использования минеральных вод.

Наименование и подразделение минеральных вод определяется параметрами физико-химических свойств. Основные критерии оценки лечебных минеральных вод и их классификационное наименование представлены в табл. 1.1.

Искусственные минеральные воды не могут быть достаточно полноценным аналогом природных минеральных вод, особенно по газовому составу, содержанию микроэлементов и свойствам коллоидов. Поэтому искусственные минеральные воды используют только для наружного применения, а для внутреннего (питьевого лечения) они не рекомендуются.

По лечебному использованию природные воды подразделяют на минеральные воды наружного () и внутреннего применения ().

Несмотря на то что многие люди приблизительно представляют себе, что это такое, некоторые не могут дать определение понятию «минерал». Классификация минералов включает в себя большое количество самых разнообразных элементов, каждый из которых нашел применение в той или иной сфере деятельности благодаря своим преимуществам и особенностям. Поэтому важно знать о том, какими свойствами они обладают и как могут быть использованы.

Минералы представляют собой продукты искусственных или естественных химических реакций, которые происходят как внутри земной коры, так и на ее поверхности, и при этом являются однородными химически и физически.

Классификация

На сегодняшний день известно более 4000 различных пород, которые входят в категорию «минерал». Классификация минералов же осуществляется по следующим признакам:

  • генетические (в зависимости от происхождения);
  • практические (сырье, руда, драгоценные камни, горючее и т. п.);
  • химические.

Химическая

На данный момент наиболее распространенной является классификация минералов по химическому составу, которая применяется современными минералогами и геологами. Она базируется на характере соединений, между различными структурами элементами, типах упаковки и еще множестве других особенностей, которые может иметь минерал. Классификация минералов такого рода предусматривает разделение их на пять типов, каждый из которых характеризуется преобладанием определенного характера связи между определенными структурными единицами.

  • самородные элементы;
  • сульфиды;
  • окислы и гидроокислы;
  • соли кислородных кислот;
  • галогениды.

Далее по характеру анионов они разделяются на несколько классов (в каждом типе свое деление), внутри которых уже разбиваются на подклассы, из которых можно выделить: каркасный, цепочечный, островной, координационный и слоистый минерал. Классификация минералов, которые близки между собой по составу и имеют сходную структуру, предусматривает их объединение в различные группы.

Характеристика типов минералов

  • Самородные элементы. Сюда входят самородные металлоиды и металлы, такие как железо, платина или золото, а также неметаллы наподобие алмаза, серы и графита.
  • Сульфиты, а также различные их аналоги. Химическая классификация минералов включает в эту группу соли такие как пирит, галенит и другие.
  • Окислы, гидроокислы и другие их аналоги, представляющие собой соединение металла с кислородом. Магнетит, хромит, гематит, гетит - это основные представители данной категории, которые выделяет химическая классификация минералов.
  • Соли кислородных кислот.
  • Галогениды.

Также стоит отметить, что в группе "соли кислородных кислот" существует еще и классификация минералов по классам:

  • карбонаты;
  • сульфаты;
  • вольфраматы и молибдаты;
  • фосфаты;
  • силикаты.

Также бывают разделяющиеся на три группы:

  • магматические;
  • осадочные;
  • метаморфические.

По происхождению

Классификация минералов по происхождению включает в себя три основные группы:

  • Эндогенные. Такие процессы минералообразования в преимущественном большинстве случаев предусматривают внедрение в кору земли и последующее застывание подземных раскаленных сплавов, которые принято называть магмами. При этом само образование минералов осуществляется в три шага: магматический, пегматитовый и постмагматический.
  • Экзогенные. В данном случае образование минералов осуществляется совершенно в других условиях по сравнению с эндогенным. Экзогенное минералообразование предусматривает химическое и физическое разложение веществ и одновременное формирование новообразований, имеющих устойчивость к другой среде. Кристаллы образуются в результате выветривания эндогенных минералов.
  • Метаморфические. Вне зависимости от путей образования горных пород, их прочности или устойчивости, они всегда будут изменяться под воздействием определенных условий. Породы, которые формируются по причине изменения свойств или состава первоначальных образцов, принято называть метаморфическими.

По Ферсману и Бауэру

Классификация минералов по Ферсману и Бауэру включает в себя несколько пород, предназначенных в основном для изготовления различных изделий. В нее входят:

  • самоцветы;
  • цветные камни;
  • органогенные камни.

Физические свойства

Классификация минералов и горных пород по происхождению и составу включает в себя множество наименований, и при этом каждый элемент имеет уникальные физические свойства. В зависимости от этих параметров определяется ценность той или иной породы, а также возможность его применения в различных сферах деятельности человека.

Твердость

Данная характеристика представляет собой сопротивление определенного твердого тела царапающему воздействию другого. Таким образом, если рассматриваемый минерал мягче того, которым царапают его поверхность, на нем будут оставаться следы.

Принципы классификации минералов по твердости основываются на использовании шкалы Мооса, которая представлена специально подобранными породами, каждая из которых способна царапать своим острым концом предыдущие наименования. Она включает в себя список из десяти наименований, который начинается с талька и гипса, а заканчивается, как многим известно, алмазом - наиболее твердым веществом.

Изначально породой принято проводить по стеклу. Если на нем будет оставаться царапина, то в таком случае классификация минералов по твердости уже предусматривает присваивание ему более 5-го класса. После этого твердость уже уточняется по Соответственно, если на стекле осталась царапина, то в таком случае далее берется образец из 6-го класса (полевой шпат), после чего пробуют чертить им по нужному минералу. Таким образом, если, к примеру, оставил на образце царапину, а апатит, который находится под номером 5, не оставил, ему присваивается класс 5.5.

Не стоит забывать о том, что в зависимости от значения кристаллографического направления у некоторых минералов может различаться твердость. К примеру, у дистена на плоскости спайности твердость вдоль длинной оси кристалла имеет значение 4, в то время как поперек на этой же плоскости оно увеличивается до 6. Очень твердые минералы можно встретить исключительно в группе с неметаллическим блеском.

Блеск

Формирование блеска у минералов осуществляется за счет отражения от их поверхности лучей света. В любом пособии о минералах классификация предусматривает деление на две крупные группы:

  • с металлическим блеском;
  • с неметаллическим блеском.

К первым относятся те породы, которые дают черную черту и являются непрозрачными даже в достаточно тонких осколках. Сюда относится магнетит, графит и уголь. В качестве исключения здесь рассматриваются также минералы с неметаллическим блеском, имеющие цветную черту. Это касается золота с зеленоватой чертой, меди со своеобразной красной, серебра с серебряно-белой, а также ряда других.

Металлический по своей природе схож с блеском свежего излома различных металлов, и его достаточно хорошо можно увидеть на свежей поверхности образца, даже если рассматриваются Классификация изделий с таким блеском также включает в себя непрозрачные образцы, которые являются более тяжелыми в сравнению с первой категорией.

Металлический блеск является характерным для минералов, которые представляют собой руду различных металлов.

Цвет

Стоит отметить, что цвет является постоянным признаком только для некоторых минералов. Таким образом, малахит всегда остается зеленым, золото не теряет своего золотисто-желтого цвета и т. д., в то время как для множества других он является непостоянным. Для определения цвета нужно предварительно получить свежий скол.

Отдельное внимание следует уделить тому, что классификация свойств минералов предусматривает также такое понятие, как цвет черты (молотого порошка), который зачастую не отличается от стандартного. Но при этом существуют и такие породы, у которых цвет порошка значительно отличается от их собственного. К примеру, в их число входит кальцит, который может быть желтым, белым, голубым, синим и еще во множестве других вариаций, но при этом порошок в любом случае будет оставаться белым.

Порошок, или черта минерала, получается на фарфоре, который не должен покрываться никакой глазурью и среди профессионалов называется просто «бисквит». По его поверхности проводится черта определяемым минералом, после чего она немного размазывается пальцем. Не следует забывать о том, что твердые, а также сильно твердые минералы не оставляют за собой никакого следа по причине того, что этот «бисквит» они попросту будут царапать, поэтому предварительно нужно соскоблить определенную часть с них на белую бумагу, и затем уже растереть до нужного состояния.

Спайность

Данное понятие подразумевает свойство минерала раскалываться или же расщепляться в некотором направлении, оставляя при этом блестящую гладкую поверхность. Стоит отметить тот факт, что Эразм Бартолин, который открыл данное свойство, отправил результаты проведенных исследований довольно авторитетной комиссии, включающей в себя таких известных ученых, как Бойль, Гук, Ньютон и еще множество других, но они признали обнаруженные явления случайными, а законы недействительными, хотя уже буквально через столетие оказалось, что все результаты были верны.

Таким образом, предусматривается пять основных градаций спайности:

  • весьма совершенная - минерал можно легко расщепить на небольшие пластинки;
  • совершенная - при любых ударах молотком образец будет раскалываться на обломки, которые ограничиваются плоскостями спайности;
  • ясная или средняя - при попытке раскалывания минерала формируются обломками, которые ограничиваются не только плоскостями спайности, но и неровными поверхностями в случайных направлениях;
  • несовершенная - обнаруживается с определенными сложностями;
  • весьма несовершенная - спайность практически отсутствует.

Определенные минералы имеют сразу несколько направлений спайности, что зачастую становится для них основным диагностическим признаком.

Излом

Под этим понятием подразумевается поверхность раскола, которая прошла в минерале не по спайности. На сегодняшний день принято различать основные пять типов изломов:

  • ровный - на поверхности отсутствуют какие-либо заметные изгибы, но при этом она не зеркально ровная, как в случае со спайностью;
  • ступенчатый - характерен для кристаллов, имеющих более-менее ясную и совершенную спайность;
  • неровный - проявляется, к примеру, у апатита, а также ряда других минералов, имеющих несовершенную спайность;
  • занозистый - характерен для минералов волокнистого сложения и чем-то схож с изломом древесины поперек волокнистости;
  • раковистый - по форме своей поверхности схож с раковиной;

Другие свойства

Достаточно большое количество минералов имеет такой диагностический или отличительный признак, как магнитность. Для ее определения принято использовать стандартный компас или специальный намагниченный нож. Проведение испытаний в данном случае осуществляется следующим образом: берется небольшой кусочек или же малое количество порошка испытуемого материала, после чего к нему притрагиваются намагниченным ножом или подковкой. Если после этой процедуры частички минерала начинают притягиваться, это говорит о наличии у него определенной магнитности. При использовании компаса его кладут на какую-нибудь ровную поверхность, после чего дожидаются выравнивания стрелки и подносят к ней минерал, не прикасаясь при этом к самому устройству. Если стрелка начинает смещаться, это говорит о том, что он магнитный.

Определенные минералы, в составе которых содержатся углекислые соли, под воздействием соляной кислоты начинают выделять углекислый газ, который проявляется в визе пузырьков, поэтому многие называют это «кипением». Среди таких минералов выделяются: малахит, кальцит, мел, мрамор и известняк.

Также некоторые вещества можно хорошо растворять в воде. Такую способность минералов несложно определить на вкус, и в частности, это касается а также и других.

Если требуется проведение исследований минералов на плавкость и горение, то нужно предварительно отколоть небольшой кусочек от образца, после чего с помощью пинцета внести его непосредственно в пламя от газовой горелки, спиртовки или же свечи.

Формы их нахождения в природе

В преимущественном большинстве случаев в природе различные минералы встречаются в виде сростков или одиночных кристаллов, а также могут показываться в виде скоплений. Последние состоят из большого количества зерен, имеющих внутреннее кристаллическое строение. Таким образом, выделяется три основных группы, имеющих характерный внешний вид:

  • изометрические, одинаково развитые во всех трех направлениях;
  • удлиненные, имеющие более вытянутые формы в одном из направлений;
  • вытянутые в двух направлениях при сохранении третьего в коротком виде.

При этом стоит отметить, что некоторые минералы могут собой образовывать закономерно сросшиеся кристаллы, которые потом называют двойниками, тройниками и другими наименованиями. Такие образцы зачастую являют собой результат срастания или же взаимного прорастания кристаллов.

Виды

Не стоит путать закономерные сростки и незакономерные агрегаты кристаллов, к примеру, со «щетками» или же друзами, которые нарастают на стенах пещер и различных полостей в горных породах. Друзы представляют собой сростки, образующиеся из нескольких более или менее правильных кристаллов и при этом прирастающие одним концом к какой-нибудь породе. Для их формирования требуется открытая полость, которая предусматривает возможность свободного роста минералов.

Помимо всего прочего, многие кристаллические минералы отличаются достаточно сложными неправильными формами, что приводит к образованию дендритов, натечных форм и других. Формирование дендритов осуществляется по причине слишком быстрой кристаллизации минералов, расположенных в тонких трещинах и порах, причем породы в данном случае начинают напоминать довольно причудливые ветви растений.

Нередко бывают и такие ситуации, когда минералы практически полностью заполняют небольшое пустое пространство, что приводит к образованию секреции. У них используется концентрическое строение, а минеральное вещество заполняет его к центру от периферии. Достаточно крупные секреции, у которых внутри остается пустое пространство, принято называть жеодами, в то время как небольшие образования именуются миндалинами.

Конкреции - это стяжения некорректной округлой или шарообразной формы, формирование которых возникает по причине активного отложения минеральных веществ вокруг определенного центра. Довольно часто для них характерна радиально-лучистая внутренняя конструкция, а в отличие от секреций рост осуществляется, наоборот, к периферии от центра.



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...