Марковская цепь. Цепи Маркова. Примеры решения задач

Марковская цепь - такая цепь событий в которой вероятность каждого события зависит только от предыдущего состояния.

Настоящая статья носит реферативный характер, написана на основе приведенных в конце источников, которые местами цитируются.

Введение в теорию марковских цепей

Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от состояния, в котором процесс находится в текущий момент и не зависит от более ранних состояний. Конечная дискретная цепь определяется:

∑ j=1…n p ij = 1

Пример матрицы переходных вероятностей с множеством состояний S = {S 1 , …, S 5 }, вектором начальных вероятностей p (0) = {1, 0, 0, 0, 0}:

Спомошью вектора начальных вероятностей и матрицы переходов можно вычислить стохастический вектор p (n) - вектор, составленный из вероятностей p (n) (i) того, что процесс окажется в состоянии i в момент времени n. Получить p (n) можно с помощью формулы:

p (n) = p (0) ×P n

Векторы p (n) при росте n в некоторых случаях стабилизируются - сходятся к некоторому вероятностному вектору ρ, который можно назвать стационарным распределением цепи. Стационарность проявляется в том, что взяв p (0) = ρ, мы получим p (n) = ρ для любого n.

Простейший критерий, который гарантирует сходимость к стационарному распределению, выглядит следующим образом: если все элементы матрицы переходных вероятностей P положительны, то при n, стремящемуся к бесконечности, вектор p (n) стремится к вектору ρ, являющемуся единственным решением системы вида

Также можно показать, что если при каком-нибудь положительном значении n все элементы матрицы P n положительны, тогда вектор p (n) все-равно будет стабилизироваться.

Доказательство этих утверждений есть в в подробном виде.

Марковская цепь изображается в виде графа переходов, вершины которого соответствуют состояниям цепи, а дуги - переходам между ними. Вес дуги (i, j), связывающей вершины si и sj будет равен вероятности pi(j) перехода из первого состояния во второе. Граф, соответствующий матрице, изображенной выше:

Классификация состояний марковских цепей

При рассмотрении цепей Маркова нас может интересовать поведение системы на коротком отрезке времени. В таком случае абсолютные вероятности вычисляются с помощью формул из предыдущего раздела. Однако более важно изучить поведение системы на большом интервале времени, когда число переходов стремится к бесконечности. Далее вводятся определения состояний марковских цепей, которые необходимы для изучения поведения системы в долгосрочной перспективе.

Марковские цепи классифицируются в зависимости от возможности перехода из одних состояний в другие.

Группы состояний марковской цепи (подмножества вершин графа переходов), которым соответствуют тупиковые вершины диаграммы порядка графа переходов, называются эргодическими классами цепи. Если рассмотреть граф, изображенный выше, то видно, что в нем 1 эргодический класс M1 = {S5}, достижимый из компоненты сильной связности, соответствующей подмножеству вершин M2 = {S1, S2, S3, S4}. Состояния, которые находятся в эргодических классах, называются существенными, а остальные - несущественными (хотя такие названия плохо согласуются со здравым смыслом). Поглощающее состояние si является частным случаем эргодического класса. Тогда попав в такое состояние, процесс прекратится. Для Si будет верно pii = 1, т.е. в графе переходов из него будет исходить только одно ребро - петля.

Поглощающие марковские цепи используются в качестве временных моделей программ и вычислительных процессов. При моделировании программы состояния цепи отождествляются с блоками программы, а матрица переходных вероятностей определяет порядок переходов между блоками, зависящий от структуры программы и распределения исходных данных, значения которых влияют на развитие вычислительного процесса. В результате представления программы поглощающей цепью удается вычислить число обращений к блокам программы и время выполнения программы, оцениваемое средними значениями, дисперсиями и при необходимости - распределениями. Используя в дальнейшем эту статистику, можно оптимизировать код программы - применять низкоуровневые методы для ускорения критических частей программы. Подобный метод называется профилированием кода.

Например, в алгоритме Дейкстры присутствуют следующие состояния цепи:

    vertex (v), извлечение новой вершины из очереди с приоритетами, переход только в состояние b;

    begin (b), начало цикла перебора исходящих дуг для процедуры ослабления;

    analysis (a), анализ следующей дуги, возможен переход к a, d, или e;

    decrease (d), уменьшение оценки для некоторой вершины графа, переход к a;

    end (e), завершение работы цикла, переход к следующей вершине.

Остается задать вероятности переходом между вершинами, и можно изучать продолжительности переходов между вершинами, вероятности попадания в различные состояния и другие средние характеристики процесса.

Аналогично, вычислительный процесс, который сводится к обращениям за ресурсами системы в порядке, определяемом программой, можно представить поглощающей марковской цепью, состояния которой соответствуют использованию ресурсов системы – процессора, памяти и периферийных устройств, переходные вероятности отображают порядок обращения к различным ресурсам. Благодаря этому вычислительный процесс представляется в форме, удобной для анализа его характеристик.

Цепь Маркова называется неприводимой, если любое состояние Sj может быть достигнуто из любого другого состояния Si за конечное число переходов. В этом случае все состояния цепи называются сообщающимися, а граф переходов является компонентой сильной связности. Процесс, порождаемый эргодической цепью, начавшись в некотором состоянии, никогда не завершается, а последовательно переходит из одного состояния в другое, попадая в различные состояния с разной частотой, зависящей от переходных вероятностей. Поэтому основная характеристика эргодической цепи –

вероятности пребывания процесса в состояниях Sj, j = 1,…, n, доля времени, которую процесс проводит в каждом из состояний. Неприводимые цепи используются в качестве моделей надежности систем. Действительно, при отказе ресурса, который процесс использует очень часто, работоспособность всей системы окажется под угрозой. В таком случае дублирование такого критического ресурса может помочь избежать отказов. При этом состояния системы, различающиеся составом исправного и отказавшего оборудования, трактуются как состояния цепи, переходы между которыми связаны с отказами и восстановлением устройств и изменением связей между ними, проводимой для сохранения работоспособности системы. Оценки характеристик неприводимой цепи дают представление о надежности поведения системы в целом. Также такие цепи могут быть моделями взаимодействия устройств с задачами, поступающими на обработку.

Примеры использования

Система обслуживания с отказами

Сервер, состоит из нескольких блоков, например модемов или сетевых карт, к которым поступают запросы от пользователей на обслуживание. Если все блоки заняты, то запрос теряется. Если один из блоков принимает запрос, то он становится занятым до конца его обработки. В качестве состояний возьмем количество незанятых блоков. Время будет дискретно. Обозначим за α вероятность поступления запроса. Также мы считаем, что время обслуживания также является случайным и состоящим из независимых продолжений, т.е. запрос с вероятностью β обслуживается за один шаг, а с вероятностью (1 - β) обслуживается после этого шага как новый запрос. Это дает вероятность (1 - β) β для обслуживания за два шага, (1 - β)2 β для обслуживания за три шага и т.д. Рассмотрим пример с 4 устройствами, работающими параллельно. Составим матрицу переходных вероятностей для выбранных состояний:

Можно заметить, что она имеет единственный эргодический класс, и, следовательно, система p × P = p в классе вероятностных векторов имеет единственное решение. Выпишем уравнения системы, позволяющей находить это решение:


Теперь известен набор вероятностей πi того, что в стационарном режиме в системе будет занято i блоков. Тогда долю времени p 4 = С γ 4 /4 в системе заняты все блоки, система не отвечает на запросы. Полученные результаты распространяются на любое число блоков. Теперь можно воспользоваться ими: можно сопоставить затраты на дополнительные устройства и уменьшение времени полной занятости системы.

Подробнее можно ознакомиться с этим примером в .

Процессы принятия решений с конечным и бесконечным числом этапов

Рассмотрим процесс, в котором есть несколько матриц переходных вероятностей. Для каждого момента времени выбор той или иной матрицы зависит от принятого нами решения. Понять вышесказанное можно на следующем примере. Садовник в результате анализа почвы оценивает ее состояние одним из трех чисел: (1) - хорошее, (2) - удовлетворительное или (3) - плохое. При этом садовник заметил, что продуктивность почвы в текущем году зависит только от ее состояния в предыдущем году. Поэтому вероятности перехода почвы без внешних воздействий из одного состояния в другое можно представить следующей цепью Маркова с матрицей P1:

Логично, что продуктивность почвы со временем ухудшается. Например, если в прошлом году состояние почвы было удовлетворительное, то в этом году оно может только остаться таким же или стать плохим, а хорошим никак не станет. Однако садовник может повлиять на состояние почвы и изменить переходные вероятности в матрице P1 на соответствующие им из матрицы P2:

Теперь можно сопоставить каждому переходу из одного состояния в другое некоторую функцию дохода, которая определяется как прибыль или убыток за одногодичный период. Садовник может выбирать использовать или не использовать удобрения, именно от этого будет зависеть его конечный доход или убыток. Введем матрицы R1 и R2, определяющие функции дохода в зависимости от затрат на удобрения и качества почвы:

Наконец перед садовником стоит задача, какую стратегию нужно выбрать для максимизации среднего ожидаемого дохода. Может рассматриваться два типа задач: с конечным и бесконечным количеством этапов. В данном случае когда-нибудь деятельность садовника обязательно закончится. Кроме того, визуализаторы решают задачу принятия решений для конечного числа этапов. Пусть садовник намеревается прекратить свое занятие через N лет. Наша задача теперь состоит в том, чтобы определить оптимальную стратегию поведения садовника, то есть стратегию, при которой его доход будет максимальным. Конечность числа этапов в нашей задаче проявляется в том, что садовнику не важно, что будет с его сельскохозяйственным угодьем на N+1 год (ему важны все года до N включительно). Теперь видно, что в этом случае задача поиска стратегии превращается в задачу динамического программирования. Если через fn(i) обозначить максимальный средний ожидаемый доход, который можно получить за этапы от n до N включительно, начиная из состояния с номером i, то несложно вывести рекуррентное

Здесь k - номер используемой стратегии. Это уравнение основывается на том, что суммарный доход rijk + fn+1(j) получается в результате перехода из состояния i на этапе n в состояние j на этапе n+1 с вероятностью pijk.

Теперь оптимальное решение можно найти, вычисляя последовательно fn(i) в нисходящем направлении (n = N…1). При этом введение вектора начальных вероятностей в условие задачи не усложнит ее решение.

Данный пример также рассмотрен в .

Моделирование сочетаний слов в тексте

Рассмотрим текст, состоящий из слов w. Представим процесс, в котором состояниями являются слова, так что когда он находится в состоянии (Si) система переходит в состояние (sj) согласно матрице переходных вероятностей. Прежде всего, надо «обучить» систему: подать на вход достаточно большой текст для оценки переходных вероятностей. А затем можно строить траектории марковской цепи. Увеличение смысловой нагрузки текста, построенного при помощи алгоритма цепей Маркова возможно только при увеличении порядка, где состоянием является не одно слово, а множества с большей мощностью - пары (u, v), тройки (u, v, w) и т.д. Причем что в цепях первого, что пятого порядка, смысла будет еще немного. Смысл начнет появляться при увеличении размерности порядка как минимум до среднего количества слов в типовой фразе исходного текста. Но таким путем двигаться нельзя, потому, что рост смысловой нагрузки текста в цепях Маркова высоких порядков происходит значительно медленнее, чем падение уникальности текста. А текст, построенный на марковских цепях, к примеру, тридцатого порядка, все еще будет не настолько осмысленным, чтобы представлять интерес для человека, но уже достаточно схожим с оригинальным текстом, к тому же число состояний в такой цепи будет потрясающим.

Эта технология сейчас очень широко применяется (к сожалению) в Интернете для создания контента веб-страниц. Люди, желающие увеличить трафик на свой сайт и повысить его рейтинг в поисковых системах, стремятся поместить на свои страницы как можно больше ключевых слов для поиска. Но поисковики используют алгоритмы, которые умеют отличать реальный текст от бессвязного нагромождения ключевых слов. Тогда, чтобы обмануть поисковики используют тексты, созданные генератором на основе марковской цепи. Есть, конечно, и положительные примеры использования цепей Маркова для работы с текстом, их применяют при определении авторства, анализе подлинности текстов.

Цепи Маркова и лотереи

В некоторых случаях вероятностная модель используется в прогнозе номеров в различных лотереях. По-видимому, использовать цепи Маркова для моделирования последовательности различных тиражей нет смысла. То, что происходило с шариками в тираже, никак не повлияет на результаты следующего тиража, поскольку после тиража шары собирают, а в следующем тираже их укладывают в лоток лототрона в фиксированном порядке. Связь с прошедшим тиражом при этом теряется. Другое дело последовательность выпадения шаров в пределах одного тиража. В этом случае выпадение очередного шара определяется состоянием лототрона на момент выпадения предыдущего шара. Таким образом, последовательность выпадений шаров в одном тираже является цепью Маркова, и можно использовать такую модель. При анализе числовых лотерей здесь имеется большая трудность. Состояние лототрона после выпадения очередного шара определяет дальнейшие события, но проблема в том, что это состояние нам неизвестно. Все что нам известно, что выпал некоторый шар. Но при выпадении этого шара, остальные шары могут быть расположены различным образом, так что имеется группа из очень большого числа состояний, соответствующая одному и тому же наблюдаемому событию. Поэтому мы можем построить лишь матрицу вероятностей переходов между такими группами состояний. Эти вероятности являются усреднением вероятностей переходов между различными отдельными состояниями, что конечно, снижает эффективность применения модели марковской цепи к числовым лотереям.

Аналогично этому случаю, такая модель нейронной сети может быть использована для предсказания погоды, котировок валют и в связи с другими системами, где есть исторические данные, и в будущем может быть использована вновь поступающая информация. Хорошим применением в данном случае, когда известны только проявления системы, но не внутренние (скрытые) состояния, могут быть применены скрытые марковские модели, которые подробно рассмотрены в Викиучебнике (скрытые марковские модели).

Марковский случайный процесс с дискретными состояниями и дискретным временем называют марковской цепью . Для такого процесса моменты t 1 , t 2 , когда система S может менять свое состояние, рассматривают как последовательные шаги процесса, а в качестве аргумента, от которого зависит процесс, выступает не время t , а номер шага 1, 2, k , Случайный процесс в этом случае характеризуется последовательностью состояний S(0) , S(1) , S(2) , S(k) , где S(0) - начальное состояние системы (перед первым шагом); S(1) - состояние системы после первого шага; S(k) - состояние системы после k -го шага...

Событие {S(k) = S i }, состоящее в том, что сразу после k -го шага система находится в состоянии S i (i = 1, 2,), является случайным событием. Последовательность состояний S(0) , S(1) , S(k) , можно рассматривать как последовательность случайных событий. Такая случайная последовательность событий называется марковской цепью , если для каждого шага вероятность перехода из любого состояния S i в любое S j не зависит от того, когда и как система пришла в состояние S i . Начальное состояние S(0) может быть заданным заранее или случайным.

Вероятностями состояний цепи Маркова называются вероятности P i (k) того, что после k -го шага (и до (k + 1)-го) система S будет находиться в состоянии S i (i = 1, 2, n ). Очевидно, для любою k .

Начальным распределением вероятностей Марковской цепи называется распределение вероятностей состояний в начале процесса:

P 1 (0), P 2 (0), P i (0), P n (0).

В частном случае, если начальное состояние системы S в точности известно S(0) = S i , то начальная вероятность Р i (0) = 1, а все остальные равны нулю.

Вероятностью перехода (переходной вероятностью) на k -м шаге из состояния S i в состояние S j называется условная вероятность того, что система S после k -го шага окажется в состоянии S j при условии, что непосредственно перед этим (после k - 1 шага) она находилась в состоянии S i .

Поскольку система может пребывать в одном из n состояний, то для каждого момента времени t необходимо задать n 2 вероятностей перехода P ij , которые удобно представить в виде следующей матрицы:

где Р ij - вероятность перехода за один шаг из состояния S i в состояние S j ;

Р ii - вероятность задержки системы в состоянии S i .

Такая матрица называется переходной или матрицей переходных вероятностей.

Если переходные вероятности не зависят от номера шага (от времени), а зависят только от того, из какого состояния в какое осуществляется переход, то соответствующая цепь маркова называется однородной .

Переходные вероятности однородной Марковской цепи Р ij образуют квадратную матрицу размера n m .

Отметим некоторые ее особенности:


1. Каждая строка характеризует выбранное состояние системы, а ее элементы представляют собой вероятности всех возможных переходов за один шаг из выбранного (из i -го) состояния, в том числе и переход в самое себя.

2. Элементы столбцов показывают вероятности всех возможных переходов системы за один шаг в заданное (j -е) состояние (иначе говоря, строка характеризует вероятность перехода системы из состояния, столбец - в состояние).

3. Сумма вероятностей каждой строки равна единице, так как переходы образуют полную группу несовместных событий:

4. По главной диагонали матрицы переходных вероятностей стоят вероятности Р ii того, что система не выйдет из состояния S i , а останется в нем.

Если для однородной Марковской цепи заданы начальное распределение вероятностей и матрица переходных вероятностей , то вероятности состояний системы P i (k) (i, j = 1, 2, n ) определяются по рекуррентной формуле:

, (3.1)

Пример 1. Рассмотрим процесс функционирования системы - автомобиль. Пусть автомобиль (система) в течение одной смены (суток) может находиться в одном из двух состояний: исправном (S 1 ) и неисправном (S 2 ). Граф состояний системы представлен на рис. 3.2.

Рис. 3.2.Граф состояний автомобиля

В результате проведения массовых наблюдений за работой автомобиля составлена следующая матрица вероятностей перехода:

где P 11 = 0,8 - вероятность того, что автомобиль останется в исправном состоянии;

P 12 = 0,2 - вероятность перехода автомобиля из состояния «исправен» в состояние «неисправен»;

P 21 = 0,9 - вероятность перехода автомобиля из состояния «неисправен» в состояние «исправен»;

P 22 = 0,1 - вероятность того, что автомобиль останется в состоянии «неисправен».

Вектор начальных вероятностей состояний автомобиля задан , т.е. Р 1 (0) = 0 и Р 2 (0) =1.

Требуется определить вероятности состояний автомобиля через трое суток.

Используя матрицу переходных вероятностей и формулу (3.1), определим вероятности состояний P i (k) после первого шага (после первых суток):

P 1 (1) = P 1 (0)×P 11 + P 2 (0)×P 21 = 0?0,8 + 1?0,9 = 0,9;

P 2 (1) = P 1 (0)×P 12 + P 2 (0)×P 22 = 0?0,2 + 1?0,1 = 0,2.

Вероятности состояний после второго шага (после вторых суток) таковы:

P 1 (2) = P 1 (1)×P 11 + P 2 (1)×P 21 = 0,9×0,8 + 0,1×0,9 = 0,81;

= 0,9×0,2 + 0,1×0,1 = 0,19.

Вероятности состояний после третьего шага (после третьих суток) равны:

P 1 (3) = P 1 (2)×P 11 + P 2 (2)×P 21 = 0,81×0,8 + 0,19×0,9 = 0,819;

= 0,81×0,2 + 0,19×0,1 = 0,181.

Таким образом, после третьих суток автомобиль будет находиться в исправном состоянии с вероятностью 0,819 и в состоянии «неисправен» с вероятностью 0,181.

Пример 2. В процессе эксплуатации ЭВМ может рассматриваться как физическая система S , которая в результате проверки может оказаться в одном из следующих состояний: S 1 - ЭВМ полностью исправна; S 2 - ЭВМ имеет неисправности в оперативной памяти, при которых она может решать задачи; S 3 - ЭВМ имеет существенные неисправности и может решать ограниченный класс задач; S 4 - ЭВМ полностью вышла из строя.

В начальный момент времени ЭВМ полностью исправна (состояние S 1 ). Проверка ЭВМ производится в фиксированные моменты времени t 1 , t 2 , t 3 . Процесс, протекающий в системе S , может рассматриваться как однородная марковская цепь с тремя шагами (первая, вторая, третья проверки ЭВМ). Матрица переходных вероятностей имеет вид

Определить вероятности состояний ЭВМ после трех проверок.

Решение . Граф состояний имеет вид, показанный на рис. 3.3. Против каждой стрелки проставлена соответствующая вероятность перехода. Начальные вероятности состояний P 1 (0) = 1, P 2 (0) = P 3 (0) = P 4 (0) = 0.

Рис. 3.3. Граф состояний ЭВМ

По формуле (3.1), учитывая в сумме вероятностей только те состояния, из которых возможен непосредственный переход в данное состояние, находим:

P 1 (1) = P 1 (0)×P 11 = 1×0,3 = 0,3;

P 2 (1) = P 1 (0)×P 12 = 1×0,4 = 0,4;

P 3 (1) = P 1 (0)×P 13 = 1×0,1 = 0,1;

P 4 (1) = P 1 (0)×P 14 = 1×0,2 = 0,2;

P 1 (2) = P 1 (1)×P 11 = 0,3×0,3 = 0,09;

P 2 (2) = P 1 (1)×P 12 + P 2 (1)×P 22 = 0,3×0,4 + 0,4×0,2 = 0,20;

P 3 (2) = P 1 (1)×P 13 + P 2 (1)×P 23 + P 3 (1)×P 33 = 0,27;

P 4 (2) = P 1 (1)×P 14 + P 2 (1)×P 24 + P 3 (1)×P 34 + P 4 (1)×P 44 = 0,44;

P 1 (3) = P 1 (2)×P 11 = 0,09×0,3 = 0,027;

P 2 (3) = P 1 (2)×P 12 + P 2 (2)×P 22 = 0,09×0,4 + 0,20×0,2 = 0,076;

P 3 (3) = P 1 (2)×P 13 + P 2 (2)×P 23 + P 3 (2)×P 33 = 0,217;

P 4 (3) = P 1 (2)×P 14 + P 2 (2)×P 24 + P 3 (2)×P 34 + P 4 (2)×P 44 = 0,680.

Итак, вероятности состояний ЭВМ после трех проверок следующие: P 1 (3) = 0,027; P 2 (3) = 0,076; P 3 (3) = 0,217; P 4 (3) = 0,680.

Задача 1. По некоторой цели ведется стрельба четырьмя выстрелами в моменты времени t 1 , t 2 , t 3 , t 4 .

Возможные состояния системы: S 1 - цель невредима; S 2 - цель незначительно повреждена; S 3 - цель получила значительные повреждения; S 4 - цель полностью поражена. В начальный момент времени цель находится в состоянии S 1 . Определить вероятности состояний цели после четырех выстрелов если матрица переходных вероятностей имеет вид:

Определение. Однородной называют цепь Маркова, если условная вероятность (переход из состояния в состоянии) не зависит от номера испытания. Поэтому вместо пишут просто.

Пример 1. Случайное блуждание. Пусть на прямой в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью - на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание? пример однородной цепи Маркова с дискретным временем.

Переходной вероятностью называют условную вероятность того, что из состояния (в котором система оказалась в результате некоторого испытания, безразлично какого номера) в итоге следующего испытания система перейдет в состояние.

Таким образом, в обозначении первый индекс указывает номер предшествующего, а второй? номер последующего состояния. Например, - вероятность перехода из второго состояния в третье.

Пусть число состояний конечно и равно.

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

Так как в каждой строке матрицы помещены вероятности событий (перехода из одного и того же состояния в любое возможное состояние), которые образуют полную группу, то сумма вероятностей этих событий равна единице. Другими словами, сумма переходных вероятностей каждой строки матрицы перехода равна единице:

Приведем пример матрицы перехода системы, которая может находиться в трех состояниях; переход из состояния в состояние происходит по схеме однородной цепи Маркова; вероятности перехода задаются матрицей:

Здесь видим, что если система находилось в состоянии, то после изменения состояния за один шаг она с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,2 перейдет в состояние, то после перехода она может оказаться в состояниях; перейти же из состояния в она не может. Последняя строка матрицы показывает нам, что из состояния перейти в любое из возможных состояний с одной и той же вероятностью 0,1.

На основе матрицы перехода системы можно построить так называемый граф состояний системы, его еще называют размеченный граф состояний. Это удобно для наглядного представления цепи. Порядок построения граф рассмотрим на примере.

Пример 2. По заданной матрице перехода построить граф состояний.

Т.к. матрица четвертого порядка, то, соответственно, система имеет 4 возможных состояния.

На графе не отмечаются вероятности перехода системы из одного состояния в то же самое. При рассмотрении конкретных систем удобно сначала построить граф состояний, затем определить вероятность переходов системы из одного состояния в то же самое (исходя из требования равенства единице суммы элементов строк матрицы), а потом составить матрицу переходов системы.

Цепь Маркова – череда событий, в которой каждое последующее событие зависит от предыдущего. В статье мы подробнее разберём это понятие.

Цепь Маркова – это распространенный и довольно простой способ моделирования случайных событий. Используется в самых разных областях, начиная генерацией текста и заканчивая финансовым моделированием. Самым известным примером является SubredditSimulator . В данном случае Цепь Маркова используется для автоматизации создания контента во всем subreddit.

Цепь Маркова понятна и проста в использовании, т. к. она может быть реализована без использования каких-либо статистических или математических концепций. Цепь Маркова идеально подходит для изучения вероятностного моделирования и Data Science.

Сценарий

Представьте, что существует только два погодных условия: может быть либо солнечно, либо пасмурно. Всегда можно безошибочно определить погоду в текущий момент. Гарантированно будет ясно или облачно.

Теперь вам захотелось научиться предсказывать погоду на завтрашний день. Интуитивно вы понимаете, что погода не может кардинально поменяться за один день. На это влияет множество факторов. Завтрашняя погода напрямую зависит от текущей и т. д. Таким образом, для того чтобы предсказывать погоду, вы на протяжении нескольких лет собираете данные и приходите к выводу, что после пасмурного дня вероятность солнечного равна 0,25. Логично предположить, что вероятность двух пасмурных дней подряд равна 0,75, так как мы имеем всего два возможных погодных условия.

Теперь вы можете прогнозировать погоду на несколько дней вперед, основываясь на текущей погоде.

Этот пример показывает ключевые понятия цепи Маркова. Цепь Маркова состоит из набора переходов, которые определяются распределением вероятностей, которые в свою очередь удовлетворяют Марковскому свойству.

Обратите внимание, что в примере распределение вероятностей зависит только от переходов с текущего дня на следующий. Это уникальное свойство Марковского процесса – он делает это без использования памяти. Как правило, такой подход не способен создать последовательность, в которой бы наблюдалась какая-либо тенденция. Например, в то время как цепь Маркова способна сымитировать стиль письма, основанный на частоте использования какого-то слова, она не способна создать тексты с глубоким смыслом, так как она может работать только с большими текстами. Именно поэтому цепь Маркова не может производить контент, зависящий от контекста.

Модель

Формально, цепь Маркова – это вероятностный автомат. Распределение вероятностей переходов обычно представляется в виде матрицы. Если цепь Маркова имеет N возможных состояний, то матрица будет иметь вид N x N, в которой запись (I, J) будет являться вероятностью перехода из состояния I в состояние J. Кроме того, такая матрица должна быть стохастической, то есть строки или столбцы в сумме должны давать единицу. В такой матрице каждая строка будет иметь собственное распределение вероятностей.

Общий вид цепи Маркова с состояниями в виде окружностей и ребрами в виде переходов.

Примерная матрица перехода с тремя возможными состояниями.

Цепь Маркова имеет начальный вектор состояния, представленный в виде матрицы N x 1. Он описывает распределения вероятностей начала в каждом из N возможных состояний. Запись I описывает вероятность начала цепи в состоянии I.

Этих двух структур вполне хватит для представления цепи Маркова.

Мы уже обсудили, как получить вероятность перехода из одного состояния в другое, но что насчет получения этой вероятности за несколько шагов? Для этого нам необходимо определить вероятность перехода из состояния I в состояние J за M шагов. На самом деле это очень просто. Матрицу перехода P можно определить вычислением (I, J) с помощью возведения P в степень M. Для малых значений M это можно делать вручную, с помощью повторного умножения. Но для больших значений M, если вы знакомы с линейной алгеброй, более эффективным способом возведения матрицы в степень будет сначала диагонализировать эту матрицу.

Цепь Маркова: заключение

Теперь, зная, что из себя представляет цепь Маркова, вы можете легко реализовать её на одном из языков программирования. Простые цепи Маркова являются фундаментом для изучения более сложных методов моделирования.

Однородной называют цепь Маркова, для которой условная вероятностьперехода из состоянияв состояниене зависит от номера испытания. Для однородных цепей вместо
используют обозначение
.

Примером однородной цепи Маркова могут служить случайные блуждания. Пусть на прямой Oxв точке с целочисленной координатойx=nнаходится материальная частица. В определенные моменты времени
частица скачкообразно меняет свое положение (например, с вероятностьюpможет сместиться вправо и с вероятностью 1 –p– влево). Очевидно, координата частицы после скачка зависит от того, где находилась частица после непосредственно предшествующего скачка, и не зависит от того, как она двигалась в предшествующие моменты времени.

В дальнейшем ограничимся рассмотрением конечных однородных цепей Маркова.

Переходные вероятности. Матрица перехода.

Переходной вероятностью
называют условную вероятность того, что из состоянияв итоге следующего испытания система перейдет в состояние. Таким образом, индексотносится к предшествующему, а- к последующему состоянию.

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

, где представляют вероятности перехода за один шаг.

Отметим некоторые особенности матрицы перехода.

Равенство Маркова

Обозначим через
вероятность того, что в результатеnшагов (испытаний) система перейдет из состоянияв состояние. Например,
- вероятность перехода за 10 шагов из третьего состояния в шестое. Отметим, что приn= 1 эта вероятность сводится просто к переходной вероятности
.

Возникает вопрос, как, зная переходные вероятности
, найти вероятности перехода состоянияв состояниезаnшагов. С этой целью вводится в рассмотрение промежуточное (междуи) состояниеr. Другими словами, полагают, что из первоначального состояниязаmшагов система перейдет в промежуточное состояниеrс вероятностью
, после чего за оставшиесяn–mшагов из промежуточного состоянияrона перейдет в конечное состояниес вероятностью
. Используя формулу полной вероятности, можно показать, что справедлива формула

Эту формулу называют равенством Маркова .

Зная все переходные вероятности
, т.е. зная матрицу переходаиз состояния в состояние за один шаг, можно найти вероятности
перехода из состояние в состояние за два шага, а значит, и саму матрицу перехода, далее – по известной матрице- найтии т.д.

Действительно, полагая в равенстве Маркова n= 2,m= 1 получим

или
. В матричном виде это можно записать как
.

Полагая n=3,m=2, получим
. В общем случае справедливо соотношение
.

Пример . Пусть матрица переходаравна

Требуется найти матрицу перехода
.

Умножая матрицу саму на себя, получим
.

Для практических применений чрезвычайно важным является вопрос о расчете вероятности нахождения системы в том или ином состоянии в конкретный момент времени. Решение этого вопроса требует знания начальных условий, т.е. вероятностей нахождения системы в определенных состояниях в начальный момент времени. Начальным распределением вероятностей марковской цепи называется распределение вероятностей состояний в начале процесса.

Здесь через
обозначена вероятность нахождения системы в состояниив начальный момент времени. В частном случае, если начальное состояние системы в точности известно (например
), то начальная вероятность
, а все остальные равны нулю.

Если для однородной цепи Маркова заданы начальное распределение вероятностей и матрица перехода, то вероятности состояний системы на n-м шаге
вычисляются по рекуррентной формуле

.

Для иллюстрации приведем простой пример. Рассмотрим процесс функционирования некоторой системы (например, прибора). Пусть прибор в течение одних суток может находиться в одном из двух состояний – исправном () и неисправном (). В результате массовых наблюдений за работой прибора составлена следующая матрица перехода
,

где - вероятность того, что прибор останется в исправном состоянии;

- вероятность перехода прибора из исправного в неисправное состояние;

- вероятность перехода прибора из неисправного в исправное состояние;

- вероятность того, что прибор останется в состоянии "неисправен".

Пусть вектор начальных вероятностей состояний прибора задан соотношением

, т.е.
(в начальный момент прибор был неисправен). Требуется определить вероятности состояния прибора через трое суток.

Решение : Используя матрицу перехода, определим вероятности состояний после первого шага (после первых суток):

Вероятности состояний после второго шага (вторых суток) равны

Наконец, вероятности состояний после третьего шага (третьих суток) равны

Таким образом, вероятность того, что прибор будет находиться в исправном состоянии равна 0,819, и того, что в неисправном – соответственно 0,181.



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...