Критерий колмогорова принадлежности генеральной выборке. SPSS в психологии и социальных науках. Статистическая независимость и выявление тренда

Критерий Колмогорова-Смирнова. Проверка гипотезы об однородности выборок

Гипотезы об однородности выборок – это гипотезы о том, что рассматриваемые выборки извлечены из одной и той же генеральной совокупности.

Пусть имеются две независимые выборки, произведенные из генеральных совокупностей с неизвестными теоретическими функциями распределения и .

Проверяемая нулевая гипотеза имеет вид против конкурирующей . Будем предполагать, что функции и непрерывны и для оценки используем статистику Колмогорова – Смирнова .

Критерий Колмогорова-Смирнова использует ту же самую идею, что и критерий Колмогорова. Однако различие заключается в том, что в критерии Колмогорова сравнивается эмпирическая функция распределения с теоретической, а в критерии Колмогорова-Смирнова сравниваются две эмпирические функции распределения.

Статистика критерия Колмогорова-Смирнова имеет вид:

, (9.1)

где и – эмпирические функции распределения, построенные по двум выборкам c объемами и .

Гипотеза отвергается, если фактически наблюдаемое значение статистики больше критического , т.е. , и принимается в противном случае.

При малых объемах выборок критические значения для заданных уровней значимости критерия можно найти в специальных таблицах. При (а практически при ) распределение статистики сводится к распределению Колмогорова для статистики . В этом случае гипотеза отвергается на уровне значимости , если фактически наблюдаемое значение больше критического , т.е. , и принимается в противном случае.

Пример 1. ^ ПРОВЕРКА ОДНОРОДНОСТИ ДВУХ ВЫБОРОК

Были осуществлены две проверки торговых точек с целью выявления недовесов. Полученные результаты сведены в таблицу:


^ Номер интервала

Интервалы недовесов, г

Частоты

Выборка 1

Выборка 2

1

0 – 10

3

5

2

10 – 20

10

12

3

20 – 30

15

8

4

30 – 40

20

25

5

40 – 50

12

10

6

50 – 60

5

8

7

60 – 70

25

20

8

70 – 80

15

7

9

80 – 90

5

5

Объем первой выборки был равен , а второй – .

Решение :

Обозначим и – накопленные частоты выборок 1 и 2;
, – значения их эмпирических функций распределения соответственно. Обработанные результаты сведем в таблицу:














10

3

5

0.027

0.050

0.023

20

13

17

0.118

0.170

0.052

30

28

25

0.254

0.250

0.004

40

48

50

0.436

0.500

0.064

50

60

60

0.545

0.600

0.055

60

65

68

0.591

0.680

0.089

70

90

88

0.818

0.880

0.072

80

105

95

0.955

0.950

0.005

90

110

100

1.000

1.000

0.000

Из последнего столбца таблицы видно, что . По формуле (9.1) получим . Из статистических таблиц известно, что . Так как , то принимается нулевая гипотеза , т.е. недовесы покупателям описываются одной и той же функцией распределения.

^

СТАТИСТИЧЕСКАЯ НЕЗАВИСИМОСТЬ И ВЫЯВЛЕНИЕ ТРЕНДА


При анализе случайных данных часто возникает ситуации, когда требуется выяснить, являются ли наблюдения или оценки параметров статистически независимыми или же они подвержены тренду. Это особенно важно при анализе нестационарных данных.

Такие исследования, обычно, проводят на основе свободных от распределений или непараметрических методов , в которых относительно функции распределения исследуемых данных не делается никаких предположений.
^

Критерий серий


Рассмотрим последовательность наблюдённых значений случайной величины , причём каждое наблюдение отнесено к одному из двух взаимно исключаемых классов, которые можно обозначить просто (+) или
(–). Рассмотрим ряд примеров:

В каждом из этих примерах образуется последовательность вида:

^ Серией называется последовательность однотипных наблюдений, перед и после которой следуют наблюдения противоположного типа или же вообще нет никаких наблюдений.

В приведенной последовательности число наблюдений равно ; а количество серий равно .

Если последовательность наблюдений состоит из независимых исходов одной и той же случайной величины, т.е. если вероятность отдельных исходов [(+) или (−)] не меняется от наблюдения к наблюдению, то выборочное распределение числа серий в последовательности является случайной величиной со средним значением и дисперсией:

(9.2)

(9.3)

Здесь число исходов (+), а число исходов (−), естественно . В частном случае если , то:

. (9.4)

Предположим, что есть основание подозревать наличие тренда в последовательности наблюдений, т.е. есть основание считать, что вероятность появления (+) или (−) меняются от наблюдения к наблюдению. Существование тренда можно проверить следующим образом. Примем в качестве нулевой гипотезы тренда нет, т.е. предположим, что наблюдений являются независимыми исходами одной и той же случайной величины. Тогда для проверки гипотезы с любым требуемым уровнем значимости необходимо сравнить наблюденное число серий с границами области принятия гипотезы равными и , где .

Если наблюденное число серий окажется вне области принятия гипотезы, то нулевая гипотеза должна быть отвергнута с уровнем значимости . В противном случае нулевую гипотезу можно принять.

Пример 2. ^ ПРИМЕНЕНИЕ КРИТЕРИЯ СЕРИЙ

Имеется последовательность независимых наблюдений :


5.5

5.1

5.7

5.2

4.8

5.7

5.0

6.5

5.4

5.8

6.8

6.6

4.9

5.4

5.9

5.4

6.8

5.8

6.9

5.5

Проверим независимость наблюдений, подсчитав число серий в последовательности, полученной путем сравнения наблюдений с медианой. Применим критерий с уровнем значимости .

Из анализа данных получим, что значение является медианой. Тогда введем обозначения (+) при , (–) при . Итак, получим:

В нашем примере , а область принятия гипотезы имеет вид:

.

По статистическим таблицам находим . Т.к.

Критерий Колмогорова для простой гипотезы является наиболее простым критерием проверки гипотезы о виде закона распределения. Он связывает эмпирическую функцию распределения с функци­ей распределения
непрерывной случайной величиныX .

Пусть
- конкретная выборка из распределения с неизвестной непрерывной функцией распределения
и
- эмпирическая функция распределения. Выдвигается простая гипотеза
:
(альтернативная :
,
).

Сущность критерия Колмогорова состоит в том, что вводят в рассмотрение функцию

(7)

называемой статистикой Колмогорова, представляющей собой максимальное отклонение эмпирической функции распределения
от гипотетической (т. е. соответствующей теоретической) функции распределения
.

Колмогоров доказал, что при
закон распределения случайной величины
независимо от вида распределения с. в.X стремится кзакону распределения Колмогорова:

где К(х) - функция распределения Колмогорова, для которой составлена таблица, ее можно использовать для расчетов уже прип ≥ 20:

Найдем такое, что

Рассмотрим уравнение
С помощью функции Колмогорова найдем значение (корень) этого уравнения. Тогда по теореме Колмогорова,

откуда

Если
, то гипотезунет оснований опровергнуть; в противном случае - ее опровергают.

Пример 3. Монету бросали 4040 раз (Бюффон). Получили
выпадений герба и
выпадений решётки. Проверить, используя

а) критерий Колмогорова;

б) критерий Пирсона, согласуются ли эти данные с гипотезой о симметричности монеты (
0.05).

Случайная величина X принимает два значения:
(решётка);
(герб). Гипотеза :.

а) По таблице распределения Колмогорова находим корень урав­нения
при
. Следует
. Тогда

Для нахождения по выборке строим функции
и
и вычисляем величину
.

= -1

= -1


x i

x 1 = -1

x 2 = -1

n i

p i

0,493

0,507

Максимальное отклонение
от
равно 0,007, т.е.= 0,007. Поскольку
, то нет оснований отвергать, гипотезу
; опытные данные согласуются с гипотезой
о симметричности монеты.

б) Вычисляем статистику χ 2

По таблице
распределения находим критическую точку
Так как
, то опытные данные согласуются с гипотезой о симметричности монеты.

7. Критерий однородности Смирнова

Для проверки гипотез вида (2) (см. 20.2) об однородности двух или более выборок применяют критерий однородности :

Здесь, мы ограничимся частным случаем этой критерии для двух выборок (т.е.
). В качестве критической статистики применяется критерий однородности Смирнова, которая имеет вид:

(9)

где
число элементов выборок;
количество элементов соответственно первой и второй выборок, попавших в
й интервал.

При условии справедливости гипотезы
величинабудет распределена приблизительно по законус
степенью свободы. Гипотезаопровергается, если
или
ипринимается при всех остальных значениях критерия .

Рассмотрим следующую производственную задачу.

Пример 4. Ниже в таблице приведены условные данные о заработной плате работников двух видов предприятий: текстильной и машиностроительной отраслей, полученные в результате социологического опроса. Объёмы двух выборок выразятся как
.

Интервал зарплаты

Количество элементов выборки, попавших в данный интервал

Текстиль

Машиностроение

Решение. Проверим гипотезу (при уровнезначимости
) о том, что распределения вероятностей по заработной плате в анализируемых отраслях не отличаются друг от друга.

Далее вычисления величины по формуле критерии Смирнова (9) с учётом данных в таблице даёт

(10)

Задание. Самостоятельно проверьте это равенство.

Из таблицы значений -распределения (см. приложение) определяем критическую точку:
. Следовательно, гипотезу о совпадении вероятностных распределений заработной платы в двух отраслях необходимо отвергнуть, т.к.
. При этом, вероятность допускаемой ошибки равна 0,05.

Критерий однородности Смирнова относится к непараметрическим критериям (в отличие от критерия Пирсона), так как используемая в нём критическая статистика никак не зависит от наших предположений относительно распределения закона случайной величины.

Ранее рассматривались гипотезы, в которых закон распределения генеральной совокупности предполагался известным. Теперь займемся проверкой гипотез о предполагаемом законе неизвестного распределения, то есть будем проверять нулевую гипотезу о том, что генеральная совокупность распределена по некоторому известному закону. Обычно статистические критерии для проверки таких гипотез называются критериями согласия.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения. Это численная мера расхождения между эмпирическим и теоретическим распределением.

Основная задача. Дано эмпирическое распределение (выборка). Сделать предположение (выдвинуть гипотезу) о виде теоретического распределения и проверить выдвинутую гипотезу на заданном уровне значимости α.

Решение основной задачи состоит из двух частей:

1. Выдвижение гипотезы.

2. Проверка гипотезы на заданном уровне значимости.

Рассмотрим подробно эти части.

1. Выбор гипотезы о виде теоретического распределения удобно делать с помощью полигонов или гистограмм частот. Сравнивают эмпирический полигон (или гистограмму) с известными законами распределения и выбирают наиболее подходящий.

Приведём графики важнейших законов распределения:

Примеры эмпирических законов распределения приведены на рисунках:



В случае (а) выдвигается гипотеза о нормальном распределении, в случае (б) - гипотеза о равномерном распределении, в случае (в) - гипотеза о распределении Пуассона.

Основанием для выдвижения гипотезы о теоретическом распределении могут быть теоретические предпосылки о характере изменения признака. Например, выполнение условий теоремы Ляпунова позволяет сделать гипотезу о нормальном распределении. Равенство средней и дисперсии наводит на гипотезу о распределении Пуассона.

На практике чаще всего приходится встречаться с нормальным распределением, поэтому в наших задачах требуется проверить только гипотезу о нормальном распределении.

Проверка гипотезы о теоретическом распределении отвечает на вопрос: можно ли считать расхождение между предполагаемыми теоретическим и эмпирическим распределениями случайным, несущественным, объясняемым случайностью попадания в выборку тех или иных объектов, или же это расхождение говорит о существенном расхождении между распределениями. Для проверки существуют различные методы (критерии согласия) - c 2 (хи-квадрат), Колмогорова, Романовского и др.

Критерий Пирсона.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении. Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты). По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (7)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (7) при стремится к закону распределения с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(8)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (7`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

Пример. Результаты исследования спроса на товар представлены в таблице:

Выдвинуть гипотезу о виде распределения и проверить её на уровне значимости a=0,01.

I. Выдвижение гипотезы.

Для указания вида эмпирического распределения построим гистограмму


120 160 180 200 220 280

По виду гистограммы можно сделать предположение о нормальном законе распределения изучаемого признака в генеральной совокупности.

II. Проверим выдвинутую гипотезу о нормальном распределении, используя критерий согласия Пирсона.

1. Вычисляем , s В.В качестве вариант возьмём среднее арифметическое концов интервалов:

2. Найдём интервалы (Z i ; Z i+1): ; .

За левый конец первого интервала примем (-¥), а за правый конец последнего интервала - (+¥). Результаты представлены в табл. 4.

3. Найдем теоретические вероятности Р i и теоретические частоты (см. табл. 4).

Таблица 4

i Граница интервалов Ф(Z i) Ф(Z i+1) P i = Ф(Z i+1)-Ф(Z i)
x i x i+1 Z i Z i+1
-1,14 -0,5 -0,3729 0,1271 6,36
-1,14 -0,52 -0,3729 -0,1985 0,1744 8,72
-0,52 0,11 -0,1985 0,0438 0,2423 12,12
0,11 0,73 0,0438 0,2673 0,2235 11,18
0,73 0,2673 0,5 0,2327 11,64

4. Сравним эмпирические и теоретические частоты. Для этого:

а) вычислим наблюдаемое значение критерия Пирсона.

Вычисления представлены в табл.5.

Таблица 5

i
6,36 -1,36 1,8496 0,291
8,72 1,28 1,6384 0,188
12,12 1,88 3,5344 0,292
11,18 0,82 0,6724 0,060
11,64 -2,64 6,9696 0,599
S

б) по таблице критических точек распределения c 2 при заданном уровне значимости a=0,01 и числе степеней свободы k=m–3=5–3=2 находим критическую точку ; имеем .

Сравниваем c . . Следовательно, нет оснований отвергать гипотезу о нормальном законе распределения изучаемого признака генеральной совокупности. Т.е. расхождение между эмпирическими и теоретическими частотами незначимо (случайно). ◄

Замечание. Интервалы, содержащие малочисленные эмпирические частоты (n i <5), следует объединить, а частоты этих интервалов сложить. Если производилось объединение интервалов, то при определении числа степеней свободы по формуле K=m-3 следует в качестве m принять число оставшихся после объединения интервалов.

2. Проверка гипотезы о равномерном распределении . При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (9).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (7`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении. В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

Пример . Для выборки, интервальный статистический ряд которой имеет вид

проверить при уровне значимости α = 0,05 гипотезу о.

Критерий предназначен для сопоставления двух распределений: эмпирического с теоретическим , например, равномерным или нормальным; одного эмпирического распределения с другими эмпирическим распределением .

Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.

То есть сначала сопоставляются частоты по первому разряду, потом по сумме первого и второго разрядов, потом по сумме первого, второго и третьего разрядов и т. д. Таким образом, сопоставляются всякий раз накопленные к данному разряду частоты.

Если различия между двумя распределениями существенны, то в какой-то момент разность накопленных частот достигнет критического значения, что служит основанием признать различия статистически достоверными. В формулу критерия λ включается эта разность. Чем больше эмпирическое значение λ, тем более существенны различия.

Ограничения критерия Колмогорова-Смирнова

1. Критерий требует, чтобы выборка была достаточно большой. При сопоставлении двух эмпирических распределений необходимо, чтобы n 1,2 ≥ 50. Сопоставление эмпирического распределения с теоретическим иногда допускается при n ≥ 5 (Ван дер Варден Б.Л., 1960; Гублер Е.В., 1978).

2. Разряды должны быть упорядочены по нарастанию или убыванию какого-либо признака. Они обязательно должны отражать какое-то однонаправленное его изменение. Например, можно за разряды принять дни недели, 1-й, 2-й, 3-й месяцы после прохождения курса терапии, повышение температуры тела, усиление чувства недостаточности и т.д. В то же время, если взять разряды, которые случайно оказались выстроенными в данную последовательность, то и накопление частот будет отражать лишь этот элемент случайного соседства разрядов. Например, если шесть стимульных картин в методике Хекхаузена разным испытуемым предъявляются в разном порядке, невозможно говорить о накоплении реакций при переходе от картины №1 стандартного набора к картине №2 и т. д. Нельзя говорить об однонаправленном изменении признака при сопоставлении категорий «очередность рождения», «национальность», «специфика полученного образования»» и т.п. Эти данные представляют собой номинативные шкалы: в них нет никакого однозначного однонаправленного изменения признака.

Итак, невозможно накапливать частоты по разрядам, которые отличаются лишь качественно и не представляют собой шкалы порядка. Во всех тех случаях, когда разряды представляют собой не упорядоченные по возрастанию или убыванию какого-либо признака категории, следует .

Автоматический расчет критерия Колмогорова-Смирнова

Чтобы произвести расчет данных по критерию, необходимо:

Включить поддержку JavaScript;

Выбрать вид сопоставляемых распределений: «эмпирического с теоретическим» или «эмпирического с эмпирическим»;

Ввести данные разрядов (на увеличение или уменьшение), частоты. Данные необходимо вводить по одному числу на строку, без пробелов, пропусков и т.д., вводить только цифры;

Произвести расчет, нажав на кнопку «Шаг 2».

В случае некорректной работы скрипта (ошибок в расчетах и пр.), просим вас .

По опыту хождения на защиты курсовых и дипломных работ по психологии подметил ряд распространённых и коварных ошибок в работах. Задумал черкнуть текст, предостерегающий от таких ошибок. Буду благодарен, если специалисты по статистике проверят.

Чтобы не вываливать сразу много, пока первые пять пунктов.


1. Если по критерию Колмогорова-Смирнова получилось p-значение больше 0,05 (или 0,1) – распределение нормально, можно делать параметрические методы.

Критерий Колмогорова-Смирнова оценивает значимость различий между формой двух распределений. При проверке нормальности (на самом деле, это лишь частный случай применения K-S теста) речь идёт об обнаружении значимых отличий между формой Вашего распределения и моделью нормального. То есть p-значение больше 0,05 (и т.п.) следует понимать как «Я не нашёл различий между Вашим распределением и нормальным (значимых различий на этом уровне)».

А не найти различия можно просто потому, что на руках слишком мало данных для обнаружения. Точно так же, как следователь не может найти преступника при малом количестве улик. Это ещё не значит, что дело чисто.

Так вот, Колмогоров-Смирнов – весьма требовательный к объёму данных критерий, который начинает адекватно работать на выборке в районе 80. Чем меньше выборка – тем труднее ему углядеть что-нибудь. На выборках в 20-40 человек, которые часто бывают в студенческих работах, критерий Колмогорова-Смирнова практически всегда будет заявлять «Я не смог увидеть никаких различий», каким бы перекошенным не являлось Ваше распределение.

Прикиньте теперь весь ужас ситуации, когда студент перво-наперво сделал Колмогорова-Смирнова на малом количестве респондентов, радостно заключил о нормальности и пошёл напропалую пользоваться параметрическими методами? Это ведь ставит под сомнение АБСОЛЮТНО ВСЁ, что он потом получил в работе.

При выборке в несколько десятков (но ощутимо меньше 80) следует говорить лишь об условной нормальности данных, которая оценивается через величины ассиметрии и эксцесса по сравнению с их стандартными ошибками. Если же выборка составляет эдак 20 – здесь просто нет и не может быть нормальности. Никогда. Сразу обращайтесь к непараметрической статистике.

2. Если общая выборка исследования дала нормальное распределение, то дальше можно сравнивать что угодно с чем угодно при помощи параметрических методов.

Необходимость нормального распределения для параметрических методов связана с их опорой на средние значения (и другие параметры распределения). Когда в какой-то группе нет нормального распределения – среднее может быть бессмысленным (среднее чисел 9, 10, 11 и 130 равно 40 – результат не похож ни на одно из усредняемых чисел). А когда нормальность есть – среднее заведомо получится осмысленным.

Соответственно, ПРИ СРАВНЕНИИ ДВУХ групп через средние значения, нужно иметь ДВА осмысленных средних значения. При сравнении трёх – три, и так далее. Нормальное распределение на общей выборке Вам нужно только в том случае, если Вы делаете какие-то выводы об этой общей выборке. А сколько потом групп Вы изучаете параметрическими методами – столько у Вас и должно быть (условно) нормальных распределений.

3. Если получилось нормальное распределение, можно делать дисперсионный анализ.

Дисперсионный анализ как раз-таки мало уязвим к ненормальным распределениям (кроме некоторых частных случаев). Проверка подвыборок на нормальность желательна, но от нарушений нормальности ничего страшного, скорее всего, не случится.

Однако дисперсионный анализ предъявляет ещё два особых требования к данным. Во-первых, не должно быть значимых различий во внутригрупповых дисперсиях (проверяются тестом Ливеня) – это таит серьёзную угрозу, если Ваши группы заметно отличаются по размеру. Во-вторых и в-главных, факторы для многофакторного дисперсионного анализа должны быть независимы друг от друга. Не нарушайте этого условия, не используйте в качестве факторов связанные показатели! Тогда адекватное решение задачи достигается только структурным моделированием, а не дисперсионным анализом.

Чтобы облегчить себе жизнь, для многофакторного дисперсионного анализа лучше всего сразу набирать равномерный комплекс. Равномерный комплекс – это когда на все возможные сочетания факторов приходится одинаковое количество наблюдений (типа: 16 молодых женщин-узбечек, 16 молодых женщин-татарок, 16 молодых женщин-русских, 16 молодых мужчин-узбеков, 16 молодых мужчин-татар, 16 молодых мужчин-русских, 16 пожилых женщин-узбечек, 16 пожилых женщин-татарок, 16 пожилых женщин-русских, 16 пожилых мужчин-узбеков, 16 пожилых мужчин-татар, 16 пожилых мужчин-русских).

5.Корреляционный анализ позволяет выявить взаимосвязь.

Слово «взаимосвязь» регулярно появляется в работах, организация которых не позволяет найти причин и следствий. Студенты обычно в курсе, что корреляция не означает «влияния», это слово они предусмотрительно и заменяют «взаимосвязью».

Задумайтесь уже просто над звучанием слова. Взаимная связь. То есть связь в обе стороны. Если А взаимосвязано с Б – значит, через А происходит какое-то воздействие на Б и одновременно через Б – какое-то воздействие на А. Как Вы думаете, если корреляция не способна подтвердить влияние даже в одну сторону, может ли она подтвердить влияние в обе стороны?

Корреляция показывает НЕ ВЗАИМО-, А ПРОСТО СВЯЗЬ. Вовсе не обязательно двустороннюю. Связь может быть строго односторонней: только X влияет на Y безо всякого обратного воздействия. Или наоборот: только Y влияет на X. Связь может быть действительно взаимной. Она вообще может быть только опосредованной каким-то третьим Z, когда X и Y непосредственно друг на друга не действуют. В учебнике Майерса рассказывается, что высота надгробий высоко коррелирует с количеством прожитых лет, поскольку чем дольше прожил человек, тем больше он разбогател и тем более роскошный памятник закажут его родственники (это касается западных стран, конечно). Корреляция показывает какую-то связь, сама по себе не различая случаев одностороннего влияния, двустороннего влияния, опосредованного влияния. И говорить о «взаимосвязи», имея на руках только корреляцию, не более обоснованно, чем о «влиянии».

На этапе описания статистики ошибка – чисто языковая и легко исправимая. Проблемы возникают, когда на стадии интерпретации человек полагает, что доказал именно взаимосвязь и начинает рассуждать о взаимных отношениях X и Y.



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...