Исследование характеристик вогнутых дифракционных решёток. Спектроскоп на основе вогнутой дифракционной решетки Современные дифракционные решетки для спектральных приборов

Транскрипт

1 Ярославский государственный педагогический университет им. К.Д. Ушинского Лабораторная работа 8 Определение параметров дифракционной решетки Роуланда Ярославль 010

2 Оглавление 1. Вопросы для подготовки к работе Теоретическое введение Дифракция на щели Интерференция от многих щелей Решетка как спектральный прибор Описание установки Порядок выполнения работы Задание Задание Задание Задание Задание Контрольные вопросы

3 1. Вопросы для подготовки к работе Лабораторная работа 8. Определение параметров дифракционной решетки Роуланда Цель работы: ознакомление с принципом действия и определение параметров отражательной дифракционной решетки, измерение длины световой волны с помощью этой решетки. Приборы и принадлежности: металлическая дифракционная решетка, ртутно-кварцевая лампа, станок специальной конструкции. Литература: 1. Ландсберг Г.С. Оптика, М. Наука, 1976 г.. Савельев И.В. Курс физики, т.3, 1971 г. 1. Вопросы для подготовки к работе 1. Дифракция Фраунгофера на щели.. Устройство, принцип действия и параметры дифракционной решетки. Решетка Роуланда. 3. Решетка, как спектральный аппарат. Дисперсия и разрешающая способность дифракционной решетки.. Теоретическое введение Дифракционная решетка представляет собой совокупность большого числа узких параллельных щелей, тесно расположенных на равных расстояниях друг от друга. Щели могут быть нанесены на непрозрачном экране или, наоборот, непрозрачные бороздки нанесены на прозрачную пластинку (стекло). Действие решетки основано на явлении дифракции на щели и интерференции от многих щелей. Прежде чем выяснить действие решетки в целом, рассмотрим дифракцию на одной щели. 3

4 .1. Дифракция на щели Пусть плоская монохроматическая волна падает на экран с узкой бесконечно длинной щелью. На рис..1 FF 1 проекция экрана со щелью AB на плоскость рисунка. Ширина щели (b) имеет размер порядка длины волны света. Щель AB вырезает часть фронта падающей световой волны. Все точки этого фронта колеблются в одинаковых фазах и на основании принципа Гюйгенса-Френеля, являются источниками вторичных волн. b F A B F 1 L F A ϕ C B F 1 L O 1 O Рис..1 Э O 1 Рис.. Вторичные волны распространяются по всем направлениям от (0) до (± π) к направлению распространения волн (рис..1). Если за щелью поставить линзу, то все лучи, которые шли до линзы параллельно, соберутся в одной точке фокальной плоскости линзы. В этой точке наблюдается интерференция вторичных волн. Результат интерференции зависит от числа длин полуволн, которое укладывается в разности хода между соответствующими лучами. Рассмотрим лучи, которые идут под некоторым углом ϕ к направлению падающей световой волны (рис..). BC = δ разность хода между крайними лучами. Разобьем AB на зоны Френеля (зоны Френеля в данном случае представляют собой систему параллельных плоскостей, перпендикулярных плоскости рисунка и построенных так, что расстояние от краев каждой зоны до точки O 1 отличается на). Если в δ уложиться четное число длин полуволн, то в точке O 1 будет ослабление света min. Если нечетное, то усиление света 4 Э

5 . Теоретическое введение max. Следовательно, при δ = ±m min при δ = ±(m + 1) max где m = 0; 1; ;... Поскольку δ = b sin ϕ (см. рис..), то эти условия можно записать в следующем виде: b sin ϕ = ±m b sin ϕ = ±(m + 1) min (.1) max (.) На рис..3 дано распределение интенсивности света при дифракции на щели в зависимости от угла. Её можно вычислить по формуле: I ϕ = I o sin (π b sin ϕ) (π b sin ϕ) где I o интенсивность в середине дифракционной картины; I ϕ интенсивность в точке, определяемой значением. I ϕ 3 b b b 0 b b 3 b sin ϕ Рис..3.. Интерференция от многих щелей Рассмотрим несколько параллельных щелей одинаковой ширины (b), расположенных на расстоянии (a) друг от друга (дифракционная решетка) (см. рис..4). 5

6 a d b δ 1 ϕ L O Рис..4 Дифракционная картина от щелей, как в предыдущем случае, будет наблюдаться в фокальной плоскости линзы (L). Но явление усложняется тем, что кроме дифракции от каждой щели, происходит еще и сложение световых колебаний в пучках, приходящих в фокальную плоскость линзы от отдельных щелей, т.е. происходит интерференция многих пучков. Если общее число щелей N, то интерферируют между собой N пучков. Разность хода от двух соседних щелей равна δ 1 = (b+a) sin ϕ или δ 1 = d sin ϕ, где d = a + b называется постоянной решетки. Этой разности хода соответствует одинаковая разность фаз ψ = π δ1 между соседними пучками. В результате интерференции в фокальной плоскости линзы получаются результирующие колебания с некоторой амплитудой, которая зависит от разности фаз. Если ψ = mπ (что соответствует разности хода δ 1 = m), то амплитуды колебаний складываются и интенсивность света достигает максимума. Эти максимумы называются главными т.к. они имеют значительную интенсивность и их положение не зависит от общего числа щелей. Если ψ = m () π N (или δ1 = m N), то в этих направлениях образуются минимумы света. Следовательно, при интерференции N 6 Э

7 . Теоретическое введение пучков одинаковой амплитуды возникает ряд главных максимумов, определенных условием: d sinϕ = ±m (.3) где m = 0;1;;... и добавочных минимумов, определяется условием: d sinϕ = ±m N (.4) где m = 1;;3;... кроме m = 0;N;N;..., т.к. в этом случае условие (.4) переходит в условие (.3) главных максимумов. Из условий (.4) и (.3) видно, что между двумя главными максимума располагается (N 1) добавочных минимумов, между которыми находится соответственно (N) вторичных максимумов, определенных условием: d sinϕ = ±(m + 1) N (.5) I ϕ N = sinϕ N = 3 sinϕ N = 4 sinϕ Рис..5. (без учета дифракции на одной щели) С увеличением числа щелей растет число добавочных минимумов, а главные максимумы становятся уже и ярче. На рис..5 дано 7

8 распределение интенсивности при интерференции нескольких пучков (щелей). Таким образом, при действии многих щелей имеем в направлениях, определяемых условиями: b sinϕ = ±m min от каждой щели, b sinϕ = ±(m + 1) max от каждой щели, d sinϕ = ±m главные максимумы результат d sinϕ = ±m N d sinϕ = ±(m + 1) N интерференции многих пучков, добавочные минимумы, вторичные максимумы. При наблюдении картины, даваемой дифракционной решеткой, мы отчетливо видим только главные максимумы, разделенные практически темными промежутками, ибо вторичные максимумы очень слабы, интенсивность самого сильного из них составляет не более 5% от главного. Распределение интенсивности между отдельными главными максимума неодинаково. Оно зависит от распределения интенсивности при дифракции на щели и отношения между (b) и (d). В том случае, когда (b) и (d) соизмеримы, некоторые главные максимумы отсутствуют, т.к. этим направлениям соответствуют дифракционные минимумы. Так при d = b пропадают все четные максимумы, что ведет к усилению нечетных. При d = 3b исчезает каждый третий максимум. Описанное явление иллюстрируется на рис..6. Распределение интенсивности в зависимости от угла можно вычислить по формуле: I ϕ реш. = I o sin (πbsin ϕ) sin (Nπdsin ϕ) (πbsin ϕ) sin (πbsin ϕ) где I o интенсивность, создаваемая одной щелью в центре картины. 8

9 . Теоретическое введение I 1 (ϕ) Картина дифракции на одной щели, N = 1 b b sinϕ I (ϕ x) Картина интерференции, N = 4 ()()() 3 d d d d d 3 d sinϕ I(ϕ) Суммарная картина распределения интенсивности для решетки N = 5 и d b = 4 d Рис..6 sinϕ 9

10 3. Решетка как спектральный прибор С увеличением числа щелей растет интенсивность главных максимумов, ибо возрастает количество пропускаемого решеткой света. Но самое существенное изменение, вызванное большим количеством щелей, состоит в превращении расплывчатых главных максимумов в резкие, узкие максимумы. Резкость максимумов дает возможность отличить близкие длинны волн, которые изображаются раздельными, яркими полосками и не будут перекрывать друг друга, как это имеет место при расплывчатых максимумах, получающихся при одной или малом количестве щелей. Дифракционная решетка, как и всякий спектральный прибор, характеризуется дисперсией и разрешающей способностью. За меру дисперсии принимается угловое расстояние между двумя линиями, отличающимися по длине волне на 1 Å. Если двумя линиями, отличающимися по длине на δ cоответствует разнице в углах, равная δϕ, то мерой дисперсии будет выражение: D = δϕ δ = m dcos ϕ (3.6) Разрешающая способность решетки характеризуется возможностью отличить наличие двух близких волн (разрешить две длинны волны). Обозначим через минимальный интервал между двумя волнами, которые могут быть разрешены данной дифракционной решеткой. За меру разрешающей способности решетки принято считать отношение длины волны, около которой выполняется измерение, к указанному минимальному интервалу, т.е. A =. Расчет дает, что: A = = mn, (3.7) где m порядок спектра, N общее число щелей решетки. Высокая разрешающая способность и дисперсия дифракционных решеток достигается за счет больших значений N и малых d (периодов решетки). Такими параметрами обладают решетки Роуланда. Решетка Роуланда представляет собой вогнутое металлическое зеркало, на котором нанесены бороздки (штрихи). Она может одновременно выполнять роль решетки и собирающей линзы, что позволяет 10

11 4. Описание установки получить дифракционную картину непосредственно на экране. 4. Описание установки A D 1 ϕ R 4 3 B l E C Рис. 4.1 Установка для измерений на рис. 4.1 состоит из жестко закрепленных рельс (AB и BC), по которым может свободно скользить рейка DE. На одном конце рейки закреплена решетка Роуланда (1). Решетка закреплена так, что ее плоскость перпендикулярна рейке DE. Источником света служит щель (4), освещаемая ртутно-кварцевой лампой (3). При освещении решетки вдоль направления AB можно наблюдать спектры различных порядков. Расстояние от щели до исследуемых линий в спектре ртути фиксируется по шкале, нанесенной на рейке BC, с помощью зрительной трубы (). 5. Порядок выполнения работы Задание 1. Ознакомиться с описанием работы и оптической схемой прибора. 11

12 Задание. Определить постоянную решетки Роуланда. Постоянную решетки определяют из условия главного максимума: d = m sin ϕ. Из схемы установки рис. 4.1: sinϕ = l R, где l расстояние от щели до положения спектральной линии на скамье (BC), R длина рейки (DE). Окончательно рабочая формула имеет вид: d = m R l (5.8) Постоянную определяют для трех линий в спектре ртути: Линия Яркость Å Фиолетово-синяя Зеленая Желтая 1 (ближняя к зеленой) Длины волн указаны с большей точностью, чем остальные члены формулы (5.8), поэтому можно считать, что = const. Длина рейки (DE) R = (150 ± 5)мм. Коэффициент надежности взять α = 3. 1 Задание следует выполнять в следующей последовательности: 1) включить ртутно-кварцевую лампу и прогреть в течение 5 мин., а затем проверить хорошо ли освещена щель;) передвигая рейку DE по рельсам, находят с помощью зрительной трубы зеленую линию в спектре первого порядка, m = 1 (левая часть скамьи BC), если линия широкая, то уменьшить ширину щели и снять показание (l). Затем трубку переводят на фиолетово-синию линию (влево от зеленой по скамье BC);

13 5. Порядок выполнения работы 3) такие же измерения для этих же линий провести в спектре второго порядка, m = (правая часть скамьи BC); измерения для m > не проводятся т.к. для этого недостаточна длина рельсы BC. В данной работе можно ограничиться однократными измерениями, т.к. относительная ошибка в определении (R) существенно превосходит относительную ошибку в определении l (δ l = 0,5мм при α = 3). Окончательный результат, таким образом, определяется для всех линий примерно с одинаковой точностью, поэтому его можно в конце усреднить по всем измеряемым линиям. Ошибка в определении постоянной решетки Роуланда определяется по формуле: δd = d R δ R, (5.9) δ R = 5 мм стандартная ошибка в определении длины рейки (DE). Данные опытов удобно занести в таблицу следующего вида: Таблица 1 m, Å l (mm) d(mm) d ср Желт Желт. Задание 3. Определить длину волны одной из желтых линий. Используя результаты полученные в задании определить длину волны второй желтой линии: жii = d жi l жii mr (5.10) 13

14 где d жi постоянная решетки, полученная в задании. Значения жii для обоих порядков (m = 1 и m =) являются равноточными, т.е. определяются стандартными отклонениями δ d и δ R, поэтому их можно усреднить. Ошибка определяется по формуле: жii = (жii d ср Окончательно результат записывается в виде:) () δd + жii δr R. (5.11) жii = (жiiср ± жii)Å, при α = 3. Задание 4. Определить угловую дисперсию решетки Роуланда. Для определения угловой дисперсии дифракционной решетки нужно измерить угловое расстояние между двумя близкими спектральными линиями. Удобно для этого использовать желтые линии ртути. жi дана в тексте задания. жii взять из задания 3. D = δ ϕ δ ϕ жi ϕ жii жi жii. (5.1) Следует определить угловую дисперсию для обоих порядков (m = 1 и m =). Сравнить полученные значения между собой и со значениями, полученными по формуле: D = m d ср cos ϕ (5.13) По указанию преподавателя произвести оценку ошибок для выражений (5.1) и (5.13). Задание 5. Вычислить теоретическую величину разрешающей способности дифракционной решетки Роуланда. где N число штрихов решетки. A = mn (5.14) 14

15 6. Контрольные вопросы Значение N определяется исходя из длины решетки (L = 9 ± 0,1мм) при α = 3 и значения постоянной решетки (см. задание). Вычисления произвести для обоих порядков (m = 1 и m =). Оценить величину ошибки для выражения (5.14). 6. Контрольные вопросы 1. Почему размеры щели должны быть соизмеримы с длинной волны?. Почему максимум нулевого порядка при освещении решетки белым светом белый, а остальные радужные? 3. Как влияет период решетки на дифракционную картину? 4. Показать, что при определении периода можно пренебречь случайной ошибкой. 15


Восточно-Сибирский государственный университет технологий и управления Кафедра «Физика» Дифракция света Лекция 4.2 Дифракция света совокупность явлений, наблюдаемых при распространении света в среде с

Специализированный учебно-научный центр - факультет МГУ им. М.В. Ломоносова, Школа имени А.Н. Колмогорова Кафедра физики Общий физический практикум Лабораторная работа Измерение длин световых волн в сплошном

ЛАБОРАТОРНАЯ РАБОТА 8- ИЗУЧЕНИЕ ДИФРАКЦИОННОЙ РЕШЕТКИ Цель работы: изучение дифракции света на одномерной дифракционной решетке и определение ее характеристик: периода дифракционной решетки, угловой дисперсии.

Дифракция света Лекция 4.2. Дифракция света Дифракция - совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями (края экранов, малые отверстия) и связанных с отклонениями

Лабораторная работа 3 Определение длины световой волны при помощи дифракционной решетки ЦЕЛЬ РАБОТЫ Ознакомление с прозрачной дифракционной решеткой, определение длин волн спектра источника света (лампы

3 Цель работы: ознакомиться с отражательной дифракционной решеткой. Задача: определить с помощью дифракционной решетки и гониометра длины волн линий спектра ртутной лампы и угловую дисперсию решеткит Приборы

ЛАБОРАТОРНАЯ РАБОТА 48 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ДИФРАКЦИОННОЙ РЕШЕТКЕ Цель работы изучение дифракции света на одномерной дифракционной решетке, определение длины волны излучения полупроводникового лазера.

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Кафедра физики ЛАБОРАТОРНАЯ РАБОТА.7 ИЗУЧЕНИЕ ДИФРАКЦИИ ФРАУНГОФЕРА

Лабораторная работа 0 ИЗУЧЕНИЕ ДИФРАЦИОННОЙ РЕШЕТКИ Приборы и принадлежности: Спектрометр, осветитель, дифракционная решетка с периодом 0,0 мм. Введение Дифракцией называется совокупность явлений, наблюдаемых

ЛАБОРАТОРНАЯ РАБОТА 6 (8) ИЗУЧЕНИЕ ПРОЗРАЧНОЙ ДИФРАКЦИОННОЙ РЕШЁТКИ Цель работы: Ознакомление с прозрачной дифракционной решёткой определение длин волн красного и зелёного цветов определение дисперсии

Ярославский государственный педагогический университет им. К. Д. Ушинского Лабораторная работа 3 Определение длины световой волны при помощи бипризмы Френеля Ярославль 2009 Оглавление 1. Вопросы для подготовки

ЛАБОРАТОРНАЯ РАБОТА 47 ИЗУЧЕНИЕ ДИФРАКЦИИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА) Цель работы наблюдение дифракционной картины при дифракции в параллельных лучах на одной и двух щелях; определение

Лабораторная работа 3 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ Цели работы: Изучение дифракционной решетки как спектрального прибора. В процессе работы необходимо: 1) найти длины волн спектральных

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 83 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЁТКИ

Лабораторная работа 20 Определение длин волн линий спектра излучения с помощью дифракционной решетки Цель работы: ознакомление с прозрачной дифракционной решеткой; определение длин волн спектра источника

Лабораторная работа 3.06 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ СВЕТА С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ Н.А. Экономов, Козис Е.В Цель работы: изучение явления дифракции световых волн на дифракционной решетке. Задание:

Лабораторная работа 3.05 ДИФРАКЦИЯ ФРАУНГОФЕРА НА ЩЕЛЯХ И ДИФРАКЦИОННЫХ РЕШЕТКАХ М.В. Козинцева, Т.Ю. Любезнова, А.М. Бишаев Цель работы: исследование особенностей дифракции Фраунгофера световых волн на

Методические указания к выполнению лабораторной работы 3..3 ИЗУЧЕНИЕ ДИФРАКЦИИ ОТ ЩЕЛИ В ЛУЧАХ ЛАЗЕРА Степанова Л.Ф. Волновая оптика: Методические указания к выполнению лабораторных работ по физике / Л.Ф.

Министерство образования и науки Российской Федерации Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра физики ИЗУЧЕНИЕ ДИФРАКЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ДВУМЕРНОЙ

Лабораторная работа 6 ИЗУЧЕНИЕ ДИФРАКЩОННОЙ РЕШЕТКИ Дифракцией света называется явление, состоящее в отклонении направления распространения световых волн от направлений, определяемых геометрической оптикой.

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 84 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЁТКИ

Лабораторная работа.4 Исследование дифракции света Цель работы: Исследовать дифракцию света в параллельных лучах. Задачи решаемые в процессе выполнения работы:) Получить дифракционную картину от дифракционной

Работа 3 ДИФРАКЦИЯ СВЕТА Цель работы: наблюдение явления дифракции света от дифракционной решетки в лучах лазера и источника белого света; измерение длины волны излучения лазера. Введение В однородной

Лабораторная работа 3.15. ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР А.И. Бугрова Цель работы: Экспериментальное определение периода и угловой дисперсии дифракционной решетки как спектрального прибора.

Лабораторная работа 3.07 ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР Н.А. Экономов, А.М. Попов. Цель работы: экспериментальное определение угловой дисперсии дифракционной решетки и расчёт её максимальной

Расчетно-графическое задание посвящено разделу волновой оптики дифракции. Цель работы изучение дифракции на дифракционной решетке. Краткая теория явления дифракции. Дифракция это явление, которое присуще

Интерференция Дифракция Волновая оптика Основные законы оптики Закон прямолинейного распространения света Свет в оптически однородной среде распространяется прямолинейно Закон независимости световых пучков

Дифракция света Дифракция отклонение распространения волн от законов геометрической оптики вблизи препятствий (огибание волнами препятствий). О б л а с т ь г е о м е т р и ч е с к о й т е н и Дифракция

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра физики ЛАБОРАТОРНАЯ РАБОТА 3.05 Изучение дифракции Фраунгофера от одной щели Москва 2008 г. 1 ЛАБОРАТОРНАЯ РАБОТА 3.05 Изучение дифракции

Лабораторная работа Исследование дифракции в параллельном пучке лазерного излучения. Цель работы: ознакомление дифракцией света на одномерной дифракционной решетке и определение длины волны лазерного излучения;

ЛАБОРАТОРНАЯ РАБОТА 5 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ ПРИ ПОМОЩИ БИПРИЗМЫ ФРЕНЕЛЯ Цель и содержание работы Целью работы является ознакомление с явлением интерференции света. Содержание работы состоит

4.. Волновая оптика Основные законы и формулы Абсолютный показатель преломления однородной прозрачной среды n = c / υ, где c скорость света в вакууме, а υ скорость света в среде, значение которой зависит

Дифракция Дифракция. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция на круглом отверстии и диске. Дифракция на щели. Дифракционная решетка. Дифракция рентгеновских лучей на кристалле. Разрешающая

Ярославский государственный педагогический университет им. К.Д.Ушинского Лаборатория оптики В.К. Мухин Лабораторная работа 6 Дифракция Френеля на круглом отверстии Ярославль 013 Оглавление Литература:...

Оптика Волновая оптика Спектральные приборы. Дифракционная решетка В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания)

Лабораторная работа 5а Определение длины световой волны с помощью дифракционной решетки. Цель работы: изучение явления дифракции света и использование, этого явления для определения длины световой волны.

Работа 25а ИЗУЧЕНИЕ ЯВЛЕНИЙ, ОБУСЛОВЛЕННЫХ ДИФРАКЦИЕЙ Цель работы: наблюдение дифракции света на дифракционной решетке, определение периода дифракционной решетки и области пропускания светофильтров Оборудование:

Примеры решения задач Пример Свет с длиной волны падает нормально на длинную прямоугольную щель ширины b Найдите угловое распределение интенсивности света при фраунгоферовой дифракции а также угловое положение

ЛАБОРАТОРНАЯ РАБОТА 272 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ МОНОХРОМАТИЧЕСКОГО СВЕТА С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1. Цель работы: определение длины волны лазерного света с помощью дифракционной решетки. 2. Теоретические

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ И.П. Чернов 00 г. ДИФРАКЦИЯ Методические указания

Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки. Дифракционная решетка может работать как в отраженном свете, так и в прошедшем свете. Рассмотрим решетку, работающую на пропускание.

МГТУ им. Н.Э. Баумана, кафедра «Физика» А.С. Чуев, Ю.В. Герасимов КОМПЬЮТЕРНАЯ ЛАБОРАТОРНАЯ РАБОТА О-84 ИЗУЧЕНИЕ ЯВЛЕНИЙ ИНТЕРФЕРЕНЦИИ И ДИФРАКЦИИ НА ПРИМЕРЕ ДИФРАКЦИОННОЙ РЕШЕТКИ Цель работы знакомство

ФИЗИКА, ч. 3 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 1-4 Вариант 1 1. На щель шириной 0,1 мм нормально падает пучок монохроматического света длиной волны 500 нм. Дифракционная картина наблюдается на экране, находящемся

И.О. Заплатина Ю.Л. Чепелев ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ ЛАЗЕРНОЙ УКАЗКИ ДИФРАКЦИОННЫМ МЕТОДОМ Екатеринбург 2013 МИНОБРНАУКИ РОССИИ ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

0050. Дифракция лазерного излучения Цель работы: Определение ширины щели и постоянной дифракционных решеток по дифракционным картинам на экране наблюдения Требуемое оборудование: Модульный учебный комплекс

3.ДИФРАКЦИЯ СВЕТА Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонениями от законов геометрической оптики. Дифракция,

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ДИЗАЙНА И ТЕХНОЛОГИИ НОВОСИБИРСКИЙ ТЕХНОЛОГИЧЕСКИЙ

РАБОТА 3 Дифракция на двойной щели и на нескольких щелях Цель работы: При изучении дифракции на двух щелях исследовать зависимость распределения интенсивности вторичных волн на экране от ширины щелей и

ЛАБОРАТОРНАЯ РАБОТА 3.3 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1. Цель работы Целью данной работы является изучение явления дифракции света на примере дифракционной решетки и

1 Тема: Волновые свойства света: дифракция Дифракцией называется явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле любое отклонение распространения волн вблизи

Работа 5. ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ОДИНОЧНОЙ ЩЕЛИ И ДИФРАКЦИОННОЙ РЕШЕТКЕ Цель работы: 1) наблюдение картины дифракции Фраунгофера от одиночной щели и дифракционной решетки в монохроматическом свете;

В задаче требуется оценка погрешностей! 1 Введение В оптике дифракция явление, которое проявляет себя как отклонения в поведении светового излучения от законов геометрической оптики. Это возможно благодаря

Волновые свойства света Природа света двойственна (дуалистична). Это означает, что свет проявляет себя и как электромагнитная волна, и как поток частиц фотонов. Энергия фотона ε: где h постоянная Планка,

ПРАКТИКУМ ПО ФИЗИЧЕСКОЙ ОПТИКЕ ИЗУЧЕНИЕ ФАЗОВОЙ ДИФРАКЦИОННОЙ РЕШЕТКИ Описание лабораторной работы 5.2 по физической оптике Новосибирск 1998 2 МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ

ЛАБОРАТОРНАЯ РАБОТА 5. ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПО КОЛЬЦАМ НЬЮТОНА. Цель и содержание работы Цель работы состоит в ознакомлении с явлением интерференции в тонких слоях. Содержание работы заключается

3 Цель работы: изучение влияния ширины узкой щели на вид дифракционной картины при наблюдении в свете лазера. Задача: проградуировать щель регулируемой ширины, используя положение минимумов дифракционной

Лабораторная работа 5 Дифракция лазерного света на дифракционной решетке. Определение параметров различных дифракционных решеток. Дифракционной решеткой можно называть любую периодическую или близкую к

Вопросы к зачету 1 «Оптика» 1. Перечислите законы отражения света. Как в принципе получить изображение в плоском зеркале? 2. Перечислить законы преломления света. 3. Чем объяснить факт преломления света?

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

16. Принцип Гюйгенса-Френеля Из геометрической оптики известно, что волна распространяется в пространстве прямолинейно. Если на пути волны встречается препятствие, то за препятствием должна образовываться

Дифракция света 1. Принцип Гюйгенса Френеля. Метод зон Френеля. 2. Дифракция на круглом отверстии, диске (дифракция Френеля). 3. Дифракция параллельных лучей (дифракция Фраунгофера): а) дифракция на щели

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов

Лабораторная работа 43 б Изучение дифракции света на дифракционной решётке Лабораторная работа разработана следующими преподавателями кафедры физики МГУЛ: - аспирант Усатов И.И., доц. ЦарьгородцевЮ.П.

ЛЕКЦИЯ 12 ДИФРАКЦИЯ СВЕТА Явление дифракции света. Принцип Гюйгенса Френеля Зоны Френеля. Дифракция Френеля на круглом отверстии. Дифракция Фраунгофера на щели 1. Явление дифракции волн Дифракция (от лат.

Министерство образования и науки Российской федерации Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра физики ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ Руководство

Исследование дифракции света Липовская М.Ю., Яшин Ю.П. Введение. Свет может проявлять себя либо как волна, либо как поток частиц, что носит название корпускулярно - волнового дуализма. Интерференция и

Интерференция световых волн Интерференция возникает при наложении волн, создаваемых двумя или несколькими источниками, колеблющимися с одинаковыми частотами и некоторой постоянной разностью фаз Такие источники

Лабораторная работа 5. Дифракция лазерного света на дифракционной решетке. Определение параметров различных дифракционных решеток. Η И.Ескин, И.С. Петрухин Описание и методика проведения опытов подготовлены

Министерство образования и науки РФ Федеральное агентство по образованию Российский государственный университет нефти и газа им. И.М. Губкина Кафедра физики http://physics.gubkin.ru ЛАБОРАТОРНАЯ РАБОТА

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.

Общие сведения

Рассмотрим более подробно теорию вогнутой дифракционной решётки. Направления главных максимумов интерференции пучков, дифрагированных на вогнутой решётке, определяются формулой, аналогичной для плоской отражательной решётки

где - число штрихов на мм; - угол падения луча АО (”нулевого луча”) на решётку; - угол дифракции для этого луча. Можно доказать, что кривая фокусировки пучков, дифрагированных на вогнутой решётке, является окружностью с радиусом, равному половине радиуса кривизны решётки (окружность Роуланда).

Формула (1) определяет направление луча дифрагированного в вершине О вогнутой решётки - “нулевого” дифрагированного луча (см. рис. 3.1). Для лучей той же длины, исходящих из той же точки А, но падающих на другие участки поверхности решётки углы и будут иными, и, в общем случае, дифрагированные лучи (то есть направления интерференционных максимумов различных пучков) не сходятся в одной точке. Это значит, что вогнутая решётка обладает аберрациями.

Разрешающая способность вогнутой решётки даётся формулой:

где - ширина решётки, - порядок спектра (в нашем случае =1), - число штрихов на единицу длины. Однако, увеличить разрешающую способность вогнутой решётки путём увеличения ширины не удастся, так как существует оптимальная ширина вогнутой решётки. Она определяется как максимальная ширина вогнутой решётки, при которой её разрешающая способность не уступает плоской решётке. Для каждой длины волны л можно указать размер решётки при котором она обладает максимальной возможной разрешающеё способностью. При дальнейшем увеличении размеров решётки разрешающая способность падает. Можно показать , что

Например, для решётки, обладающей следующими параметрами: R=1м, =26є, =0є и используемой в области л=200 нм получаем?5см.

Нормальная ширина щели

Каждая дифракционная решётка характеризуется своей аппаратной функцией, то есть зависимостью ширины изображения входной щели от ширины самой щели. Интересно найти зависимость ширины изображения щели от ширины входной щели. В такая зависимость найдена (см. рис.3.2). Пропорциональность между и наблюдается лишь при широких щелях. Уменьшение приводит к уменьшению лишь до определённых значений ширин. При дальнейшем уменьшении ширины щели (<) ширина изображения остаётся постоянной и происходит лишь уменьшение освещённости изображения. Величина называется нормальной шириной входной щели. Нормальная ширина щели это такая величина входной щели, когда её геометрическое изображение в фокальной плоскости прибора равно центральной части главного дифракционного максимума в этой же плоскости. При ширине щели меньше нормальной, изображение, образующееся в фокальной плоскости уже не является собственно изображением входной щели, а определяется дифракцией на апертурной диафрагме спектрального прибора. Нормальная ширина входной щели определяется параметрами прибора и равна

где -фокусное расстояние коллимирующего объектива (радиус кривизны вогнутой дифракционной решётки), - ширина диафрагмы (высота вогнутой дифракционной решётки). Ширина изображения щели не может стать меньше дифракционного предела. Поэтому, стремясь получить линии как можно тоньше, бесполезно использовать входную щель меньше нормальной.

Оценим для решёток МФС-8 и ВМК-1:

1) МФС-8: =30мм, =1м, . Тогда =6,7 мкм

2) ВМК-1: =50мм, =1м, . Тогда =4 мкм

То есть, для того, чтобы не потерять в интенсивности линий нужно брать ширину входной щели заведомо больше, например 15 мкм.

Основные понятия и характеристики

спектрального прибора.


Распределение освещенности в изображении щели

Дифракционная решетка

В спектральных приборах для пространственного разложения света в спектр используются дифракционные решетки. Дифракционная решетка – это оптический элемент, состоящий из большого числа регулярно расположенных штрихов, нанесенных на плоскую или вогнутую поверхность. Решетки могут быть прозрачными или отражательными. Кроме того, различают амплитудные и фазовые дифракционные решетки. У первых периодически изменяется коэффициент отражения, что вызывает изменение амплитуды падающей волны. У фазовых дифракционных решеток штрихам придается специальная форма, которая периодически изменяет фазу световой волны. Наибольшее распространение получила плоская отражательная фазовая дифракционная решетка с треугольным профилем штрихов – эшелетт.

Уравнение решетки

Фронт световой волны, падающей на дифракционную решетку, разбивается её штрихами на отдельные когерентные пучки. Когерентные пучки, претерпев дифракцию на штрихах, интерферируют,о бразуя результирующее пространственное распределение интенсивности света. Распределение интенсивности пропорционально произведению двух функций: интерференционной I N и дифракционной I D . Функция I N обусловлена интерференцией N когерентных пучков, идущих от штрихов решетки. Функция I D определяется дифракцией на отдельном штрихе.

Разность хода между когерентными параллельными пучками, идущими под углом β от соседних штрихов, составит Δs=AB+AC или (1), а соответствующая разность фаз (2). Функция I N ~ - периодическая функция с разными интенсивными главными максимумами. Положение главных максимумов определяется из условия , откуда (3), где k - порядок спектра.
Из (1) и (2) следует: . Используя (3) получим , подставив в (1): (4).

Это соотношение называется уравнением решетки. Оно показывает, что главные максимумы образуются в направлениях, когда разность хода между соседними пучками равна полному числу длин волн. Между соседними главными максимумами расположено N-2 вторичных максимумов, интенсивность которых уменьшается пропорционально 1/N , и N-1 минимумов, где интенсивность равна нулю. Уравнение решетки для применения к монохроматорам используют в более удобном виде. Так как разность между углами α и β постоянна при вращении решетки и эта разность известна θ , она определяется конструкцией монохроматора, то от двух переменных α и β переходят к одной φ – углу поворота решетки от нулевого порядка.
Обозначив и , после преобразований суммы синусов получим уравнение решетки в другой более удобной форме: (5), где φ – угол поворота решетки по отношению к положению нулевого порядка;
θ/2 – половинный угол при решетке между падающим и дифрагированным лучами. Часто уравнение решетки используют в виде: (6).
Если дифрагированноое излучение, идущее от решетки, направить в объектив, то в его фокальной плоскости образуются спектры при каждом значении числа k≠0 . При k=0 (нулевой порядок спектра) спектр не образуется, т.к. выполняется для всех длин волн. Кроме того, β= -α т.е.направление на максимум нулевого порядка определяется зеркальным отражением от плоскости решетки.

Рис.1.Пояснение принципа действия дифракционной решетки.

Длина волны блеска

Отражательная способность дифракционных решеток зависит от угла наклона штрихов – изменяя угол наклона грани штриха можно совместить центр дифракционного максимума функции I D с интерференционным главным максимумом функции I N любого порядка. Направление на центр дифракционного максимума определяется зеркальным отражением падающего пучка не от плоскости решетки, а от грани штриха. Таким образом, условие такого совмещения: углы α и β max должны одновременно удовлетворять соотношениям:
(7).

При этих условиях спектр данного порядка будет иметь наибольшую интенсивность. Угол β max называют углом «блеска», а длину волны – длиной волны «блеска» λ Blaze . Если область спектра для проведения исследований известна, то λ Blaze может быть определена из соотношения: (8), где где λ 1 и λ 2 – граничные длины волн диапазона спектра. Соотношение (8) помогает правильно выбрать решетку.

Пример 1 . Исследуемый диапазон 400…1200нм, т.е. λ 1 =400нм, λ 2 =1200нм. Тогда из формулы (8): λ Blaze =600нм. Выберите решетку с блеском 600нм.

Пример 2. Исследуемый диапазон 600…1100нм. Расчет по формуле (8) дает с округлением 776 нм. Решетки с таким блеском в предлагаемом списке нет. Выбирается решетка с блеском, ближайшим к найденному, т.е. 750нм.

Область энергетической эффективности

дифракционных решеток

Область, где коэффициент отражения решетки не менее 0.405, называется областью энергетической эффективности: (9). Величина зависит от порядка спектра: максимальна в первом порядке и быстро падает в спектрах более высоких порядков. Для первого порядка: . Длины волн, ограничивающие эту область: и .

Область дисперсии

Область дисперсии – спектральный интервал, в котором спектр данного порядка не перекрывается спектрами соседних порядков. Следовательно, имеет место однозначная связь между углом дифракции и длиной волны. Область дисперсии определяется из условия: .
(10). Для первого порядка , а , т.е. область дисперсии охватывает интервал в одну октаву. Чтобы совместить область дисперсии с областью энергетической эффективности дифракционной решетки, необходимо чтобы выполнялось условие: (11). В этом случае в пределах области дисперсии коэффициент отражения решетки для k=1 будет не менее 0.68.

Пример. Если , тогда , а .

Таким образом, для данной решетки в диапазоне от 450 нм до 900 нм область дисперсии совмещена с областью энергетической эффективности.

Дисперсия

Степень пространственного разделения лучей с разной длиной волны характеризует угловая дисперсия. Выражение для угловой дисперсии получим, дифференцируя уравнение для решетки: (12). Из этого выражения следует, что угловая дисперсия определяется исключительно углами α и β , но не числом штрихов. В применении к спектральным приборам используется обратная линейная дисперсия , которая определяется как обратная величина произведения угловой дисперсии на фокусное расстояние: .

Разрешающая способность

Теоретическая разрешающая способность: , где - разрешение. Разрешающая способность дифракционной решетки как любого спектрального прибора определяется спектральной шириной аппаратной функции . Для решетки шириной аппаратной функции является ширина главных максимумов интерференционной функции: . Тогда: (14). Спектральная разрешающая способность дифракционной решетки равна произведению порядка дифракции k на полное число штрихов N . Используя уравнение решетки: (15), где произведение - длина заштрихованной части решетки. Из выражения (15) видно, что при заданных углах α и β величина R может быть увеличена только за счет увеличения размеров дифракционной решетки. Выражение для разрешающей способности может быть представлено в другом виде из (12) и (15): (16), где - ширина дифрагированного пучка, - угловая дисперсия. Выражение (16) показывает, что разрешающая способность прямо пропорциональна величине угловой дисперсии.

Спектральная область решетки в зависимости

от числа штрихов

Для каждой дифракционной решетки с периодом d существует предельная максимальная длина волны . Она определяется из уравнения решетки при k=1 и α=β=90° и равна . Поэтому при работе в различных областях спектра используются решетки с различным числом штрихов:
- для УФ области: 3600-1200 штр/мм;
- для видимой области: 1200-600 штр/мм;
- для ИК области: менее 300 штр/мм.

Вогнутая дифракционная решетка

Вогнутая дифракционная решетка выполняет роль не только диспергирующей, но и фокусирующей системы. Выражения для спектроскопических характеристик - угловой дисперсии, разрешающей способности и области дисперсии - такие же, как для плоской решетки. Вогнутые решетки, в отличие от плоских, обладают астигматизмом. Астигматизм устраняют нанесением штрихов на асферическую поверхность или с изменяющимися по некоторому закону расстояниями между штрихами.

Голографическая дифракционная решетка

Качество дифракционной решетки определяется величиной интенсивности рассеянного света, обусловленного наличием мелких дефектов на гранях отдельных штрихов, и интенсивностью "духов" - ложных линий, возникающих при нарушении эквидистантности в расположении штрихов. Преимуществом голографических решеток по сравнению с нарезными являются отсутствие "духов" и меньшая интенсивность рассеянного света. Однако голографическая фазовая отражательная решетка имеет синусоидальную форму штриха, т. е. не является эшеллетом, поэтому обладает меньшей энергетической эффективностью (рис. 2).

Получение голографических решеток с треугольным профилем штриха, так называемых "блазированных", ведет к возникновению на гранях штрихов микроструктур, что увеличивает интенсивность рассеянного света. Кроме того, не достигается правильный треугольный профиль, что уменьшает энергетическую эффективность таких решеток.


Распределение освещенности в изображении щели

Распределение освещенности в изображении щели зависит от характера аберраций оптической системы, а также от способа освещения щели.

Аберрации
Идеальная оптическая система дает точечное изображение точки. В параксиальной области оптическая система близка к идеальной. Но при конечной ширине пучков и удалении источника от оптической оси нарушаются правила параксиальной оптики и изображение искажается. При конструировании оптической системы аберрации приходится исправлять.

Сферическая аберрациия
Распределение освещенности в пятне рассеяния при сферической аберрации таково, что в центре получается острый максимум при быстром уменьшении освещенности к краю пятна. Эта аберрация единственная, которая остается и в том случае, если точка-объект находится на главной оптической оси системы. Сферическая аберрация особенно велика в светосильных системах (с большим относительным отверстием).

Кома
Изображение точки при наличии комы имеет вид несимметричного пятна, освещенность которого максимальна у вершины фигуры рассеяния.

Астигматизм
Обусловлен неодинаковой кривизной оптической поверхности в разных плоскостях сечения и проявляется в том, что волновой фронт деформируется при прохождении оптической системы, и фокус светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещенности. Существуют две плоскости – меридиональная и перпендикулярная ей сагиттальная, в которых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях называют фокусами, а расстояние между ними является мерой астигматизма.

Кривизна поля
Отклонение поверхности наилучшей фокусировки фокальной плоскости представляет собой аберрацию, называемую кривизной поля.

Дисторсия
Дисторсия заключается в искажении изображения вследствие неодинакового линейного увеличения различных частей изображения. Эта аберрация зависит от расстояния от точки до оптической оси и проявляется в нарушении закона подобия.

Хроматическая абберация
Вследствие дисперсии света проявляются два вида хроматической аберрации: хроматизм положения фокусов и хроматизм увеличения. Первый характеризуется смещением плоскости изображения для разных длин волн, второй – изменением поперечного увеличения. Хроматическая аберрация проявляется в оптических системах, включающих элементы из преломляющих материалов. Зеркалам хроматические аберрации не свойственны. Это обстоятельство делает особенно ценным применение зеркал в монохроматорах, и других оптических системах.

Освещение входной щели

Когерентное и некогерентное освещение
Существенное значение для распределения интенсивности по ширине спектральной линии имеет характер освещения входной щели прибора, т.е. степень когерентности освещения. Практически освещение входной щели не бывает строго когерентным или некогерентным. Однако можно подойти очень близко к одному из этих двух крайних случаев. Когерентное освещение может быть осуществлено, если осветить щель точечным источником, расположенным в фокусе конденсора большого диаметра, поставленного перед щелью.

Другой способ – это безлинзовое освещение, когда источник небольших размеров помещается на большом расстоянии от щели. Некогерентное освещение можно получить, если с помощью конденсорной линзы сфокусировать источник света на входную щель прибора. Другие способы освещения занимают промежуточное положение. Важность их разграничения связана с тем, что при освещении когерентным светом могут иметь место интерференционные явления, которые не наблюдаются при освещении некогерентным светом.

Если основным требованием является достижение максимального разрешения, то апертуру дифракционной решетки заполняют когерентным светом в плоскости, перпендикулярной щели. Если требуется обеспечить максимальную яркость спектра, тогда применяют способ некогерентного освещения,при котором заполняется апертура также и в плоскости, параллельной щели.

Заполнение апертуры светом. F/#-Matcher .
Одним из основных параметров, который характеризует спектральный прибор, является его светосила. Светосила определяется максимальным угловым размером пучка света, попадающего в прибор, и измеряется отношением диаметра (d k) к фокусному расстоянию (f k) коллиматорного зеркала. На практике часто используют обратную величину, называющуюся F/# предпочтительнее использовать другую характеристику – числовую апертуру. Числовая апертура (N.A.) связана с F/# соотношением: .

Оптимальное отображение протяженного некогерентного источника света на входную щель прибора достигается в том случае, когда телесный угол пучка падающего света равен входному углу прибора.

А – площадь входной щели; θ - входной телесный угол.

Если щель и коллиматор заполнены светом, то никакая добавочная система линз и зеркал не поможет увеличить общий поток излучения, проходящий сквозь систему.

Для конкретного спектрального прибора максимальный входной телесный угол есть величина постоянная, определяемая размерами и фокусным расстоянием коллиматора: .

Для согласования угловых апертур источника света и спектрального прибора используется специальное устройство, называемое F/# Matcher. F/# Matcher применяется совместно со спектральным прибором, обеспечивая его максимальную светосилу, как со световодом, так и без него.

Рис.4. Схема F/# Matcher


Достоинствами F/# Matcher являются:

  • Использование полной геометрической светосилы спектрального прибора
  • Уменьшение рассеянного света
  • Сохранение хорошего спектрального и пространственного качества изображения
  • Возможность применения светофильтров неодинаковой толщины без искажений фокусировки


Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...